tìm m để với mọi x
\(-1\le\dfrac{x^2+5x+m}{2x^2-3x+2}< 7\)
Xác định m để với mọi m ta có
\(-1\le\dfrac{x^2+5x+m}{2x^2-3x+2}< 7\)
Tìm m để bất phương trình sau nghiệm đúng với mọi x
\(1\le\frac{x^2+5x+m}{2x^2-3x+2}< 7\)
xác định m để với mọi x ta có: \(1\le\frac{x^2+5x+m}{2x^2-3x+2}< 7\)
Xác đinh ̣ m để với moi ̣ x ta có \(-1\le\dfrac{x^2+5x+m}{2x^2-3x+2}< 7\)
Đk: \(x\in R\)
Có \(2x^2-3x+2>0;\forall x\)
\(-1\le\dfrac{x^2+5x+m}{2x^2-3x+2}< 7\) với \(\forall x\)\(\Leftrightarrow-2x^2+3x-2\le x^2+5x+m< 14x^2-21x+14\) với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+2x+m+2\ge0;\forall x\left(1\right)\\13x^2-26x+14-m>0;\forall x\left(2\right)\end{matrix}\right.\)
Từ \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}a=3>0\left(lđ\right)\\\Delta\le0\end{matrix}\right.\)\(\Leftrightarrow4-4.3\left(m+2\right)\le0\)\(\Leftrightarrow-20-12m\le0\)\(\Leftrightarrow m\ge\dfrac{-5}{3}\)
Từ \(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}a=13>0\left(lđ\right)\\\Delta< 0\end{matrix}\right.\)\(\Leftrightarrow m< 1\)
Vậy \(-\dfrac{5}{3}\le m< 1\)
Câu 1: Tìm m để biểu thức sau luôn âm: (m-4)x2+ (m+1)x + 2m-1
Câu 2: Tìm m để bất phương trình sau có nghiệm đúng với mọi x:
a/ \(\dfrac{3x^2-5x+4}{\left(m-4\right)x^2+\left(1+m\right)x+2m-1}>0\)
b/ \(-4< \dfrac{2x^2+mx-4}{-x^2+x-1}< 6\)
GIÚP MÌNH VỚI Ạ!!!
2.
b, \(-4< \dfrac{2x^2+mx-4}{-x^2+x-1}< 6\)
\(\Leftrightarrow\left\{{}\begin{matrix}-4< \dfrac{2x^2+mx-4}{-x^2+x-1}\left(1\right)\\\dfrac{2x^2+mx-4}{-x^2+x-1}< 6\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow4\left(x^2-x+1\right)>2x^2+mx-4\)
\(\Leftrightarrow2x^2-\left(m+4\right)x+8>0\)
Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2+8m-48< 0\Leftrightarrow-12< m< 4\)
\(\left(2\right)\Leftrightarrow-6\left(x^2-x+1\right)< 2x^2+mx-4\)
\(\Leftrightarrow8x^2+\left(m-6\right)x+2>0\)
Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2-12m-28< 0\Leftrightarrow-2< x< 14\)
Vậy \(m\in\left(-2;4\right)\)
2.
a, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-4\right)x^2+\left(1+m\right)x+2m-1>0\) có nghiệm đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}m-4>0\\\Delta=m^2+2m+1-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow m>5\)
1.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}m-4< 0\\\Delta=-7m^2+38m-15< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m>5\\m< \dfrac{3}{7}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow m< \dfrac{3}{7}\)
Giải hệ bpt
1) \(-4\le\dfrac{x^2-2x-7}{x^2+1}\le1\)
2) \(\dfrac{1}{13}\le\dfrac{x^2-2x-2}{x^2-5x+7}\le1\)
3) \(-1< \dfrac{10x^2-3x-2}{-x^2+3x-2}< 1\)
1.
\(-4\le\dfrac{x^2-2x-7}{x^2+1}\le1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x-7\le x^2+1\\-4x^2-4\le x^2-2x-7\end{matrix}\right.\) (Do \(x^2+1>0\))
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\\left[{}\begin{matrix}x\ge1\\x\le-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\-4\le x\le-\dfrac{3}{5}\end{matrix}\right.\)
2.
\(\dfrac{1}{13}\le\dfrac{x^2-2x-2}{x^2-5x+7}\le1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+7\le13x^2-26x-26\\x^2-2x-2\le x^2-5x+7\end{matrix}\right.\) (Do \(x^2-5x+7>0\))
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\dfrac{11}{4}\\x\le-1\end{matrix}\right.\\x\le3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{11}{4}\le x\le3\\x\le-1\end{matrix}\right.\)
Xác định tất cả các tham số m sao cho :\(-1\le\dfrac{x^2+5x+m}{2x^2-3x+2}< 7\) \(\forall x\in R\)
\(-1\le\dfrac{x^2+5x+m}{2x^2-3x+2}< 7\) ∀x ∈ R
ta thấy \(2x^2-3x+2\) (*)vô nghiệm => * luôn dương ( cx dấu vs a)
\(\left\{{}\begin{matrix}\dfrac{x^2+5x+m}{2x^2-3x+2}+1\ge0\\\dfrac{x^2+5x+m}{2x^2-3x+2}-7< 0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3x^{2^{ }}+2x+m+2\ge0\\-13x^2+26x+m-14< 0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left[{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\\\left[{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\end{matrix}\right.\)
.....
tới đây bạn tự thế số vào làm tiếp nhé
Đ\Á :[\(\dfrac{-5}{3}\);1)
Tìm giá trị của m để:
a) \(2{x^2} + 3x + m + 1 > 0\) với mọi \(x \in \mathbb{R}\);
b) \(m{x^2} + 5x - 3 \le 0\) với mọi \(x \in \mathbb{R}\)
a) Tam thức \(2{x^2} + 3x + m + 1\) có \(\Delta = {3^2} - 4.2.\left( {m + 1} \right) = 1 - 8m\)
Vì \(a = 2 > 0\) nên để \(2{x^2} + 3x + m + 1 > 0\) với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(\Delta < 0 \Leftrightarrow 1 - 8m < 0 \Leftrightarrow m > \frac{1}{8}\)
Vậy khi \(m > \frac{1}{8}\) thì \(2{x^2} + 3x + m + 1 > 0\) với mọi \(x \in \mathbb{R}\)
b) Tam thức \(m{x^2} + 5x - 3\) có \(\Delta = {5^2} - 4.m.\left( { - 3} \right) = 25 + 12m\)
Đề \(m{x^2} + 5x - 3 \le 0\) với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(m < 0\) và \(\Delta = 25 + 12m \le 0 \Leftrightarrow m \le - \frac{{25}}{{12}}\)
Vậy \(m{x^2} + 5x - 3 \le 0\) với mọi \(x \in \mathbb{R}\) khi \(m \le - \frac{{25}}{{12}}\)
Tìm m để hệ bất phương trình vô nghiệm
a) \(\left\{{}\begin{matrix}3x+4>x+9\\1-2x\le m-3x+1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2x+7\ge8x+1\\m+5< 2x\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge x^2+7x+1\\2m\le8+5x\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}3x+5\ge x-1\\\left(x+2\right)^2\le\left(x-1\right)^2+9\\mx+1>\left(m-2\right)x+m\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}2\left(x-3\right)< 5\left(x-4\right)\\mx+1\le x-1\end{matrix}\right.\)