cho (C): \(y=\dfrac{x}{x-1}\), hỏi (C) có bao nhiêu tiếp tuyến
Cho hàm số \(y=\dfrac{x-5}{x-1}\) có đồ thị (C) . Hỏi có bao nhiêu tiếp tuyến của (C) cắt trục Ox,Oy lần lượt tịa A,B phân biệt sao cho OB=4OA ?
y = \(\dfrac{1}{8}x^4\) - \(\dfrac{7}{4}x^2\) (C). Có bao nhiêu điểm A thuộc (C) sao cho tiếp tuyến của (C) tại A cắt (C) tại 2 điểm phân biệt M(x1;y1), N(x2;y2) (M, N khác A) thỏa mãn:
y1 - y2 = 3(x1 - x2)
\(y'=\dfrac{1}{2}x^3-\dfrac{7}{2}x\)
Chỉ cần để ý 1 lý thuyết:
Đường thẳng đi qua 2 điểm \(A\left(x_1;y_1\right)\) và \(B\left(x_2;y_2\right)\) sẽ có hệ số góc \(k=\dfrac{y_1-y_2}{x_1-x_2}\)
Do đó ta có hệ số góc của đường thẳng MN là \(k=3\)
\(\Rightarrow\dfrac{1}{2}x^3-\dfrac{7}{2}x=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-1\\x=3\end{matrix}\right.\) (sao lắm nghiệm vậy trời)
Biết hoành độ 3 tiếp điểm, bạn viết 3 pt tiếp tuyến rồi xét pt hoành độ với (C) coi cái nào có 4 nghiệm (trong đó có 1 nghiệm kép) thì nhận
Cho hàm số \(y=x^4-2x^2\) có đồ thị (C) . Hỏi có bao nhiêu tiếp tuyến của đồ thị (C) song song với trục hoành ?
Lời giải:
Để PTTT tại $x=x_0$ song song với trục hoành thì $f'(x_0)=0$ và $f(x_0)\neq 0$
$f'(x)=4x^3-4x=0\Leftrightarrow x=0;1;-1$
Thử các giá trị $x$ này vô $f(x_0)$ xem có khác $0$ hay không ta thu được $x=\pm 1$
Tức là có 2 tiếp tuyến của $(C)$ song song với trục hoành.
Cho hàm số \(y=\dfrac{-1}{3x^2+x+2}\) có đồ thị (C). Viết phương trình tiếp tuyến biết:
a) Có hệ số góc bằng 1
b) Tiếp tuyến song song với Δ có phương trình \(y=-3x+2\)
c) Tiếp tuyến vuông góc với phương trình x+8y+1=0
Cho f(x) = \(\dfrac{2x+2}{x-1}\) (C). Lập PT tiếp tuyến của (C) khi:
a, Tiếp tuyến song song với : y = - 4x + 8
b, Tiếp tuyến vuông góc với : y = 4x + 3
a: \(f'\left(x\right)=\dfrac{\left(2x+2\right)'\cdot\left(x-1\right)-\left(2x+2\right)\cdot\left(x-1\right)'}{\left(x-1\right)^2}\)
\(=\dfrac{2\left(x-1\right)-2x-2}{\left(x-1\right)^2}=\dfrac{-4}{\left(x-1\right)^2}\)
y-y0=f'(x0)*(x-x0)
=>y=y0+f'(x0)*(x-x0)=f(x0)+f'(x0)(x-x0)
(d)//-4x+8 nên f(x0)=-4
=>2x+2=-4x+4
=>6x=2
=>x=1/3
f'(1/3)=-4/(1/3-1)^2=-9
y=-4+(-9)(x-1/3)=-4-9x+3=-9x-1
b: (d) vuông góc y=4x+3
=>(d): y=-1/4x+b
(d): y=f(x0)+f'(x0)*(x-x0)
=>f(x0)=-1/4
=>2x+2=-1/4(x-1)=-1/4x+1/4
=>9/4x=-7/4
=>x=-7/9
f'(-7/9)=-4/(-7/9-1)^2=-81/64
y=f(-7/9)+f'(-7/9)*(x+7/9)
=-1/4-81/64(x+7/9)
=-81/64x-79/64
Bài 1: Cho \(y=\dfrac{1}{3}x^3-2x^2+3x\). Viết phương trình tiếp tuyến của (C) đi qua A(\(\dfrac{4}{9};\dfrac{4}{3}\))
Bài 2: Cho \(y=\dfrac{1}{2}x^4-3x^2+\dfrac{3}{2}\) (C). Viết phương trình tiếp tuyến của (C) đi qua A(\(0;\dfrac{3}{2}\))
Cho hàm số \(y=\dfrac{2x+1}{x-1}\) (C). Viết pt tiếp tuyến của đồ thị (C) biết
a) Tiếp tuyến cắt Ox, Oy lần lượt tại A và B sao cho tam giác OAB có diện tích bằng \(\dfrac{1}{6}\)
b) Tiếp tuyến đi qua \(A\left(-7;5\right)\)
\(y'=\dfrac{-3}{\left(x-1\right)^2}\)
Gọi tiếp điểm có hoành độ \(x_0\)
Phương trình tiếp tuyến: \(y=\dfrac{-3}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{2x_0+1}{x_0-1}\) (1)
a.
Tọa độ A và B có dạng: \(A\left(\dfrac{2x_0^2+2x_0-1}{3};0\right)\) ; \(B\left(0;\dfrac{2x_0^2+2x_0-1}{\left(x_0-1\right)^2}\right)\)
\(\Rightarrow OA=\left|\dfrac{2x_0^2+2x_0-1}{3}\right|;OB=\dfrac{\left|2x_0^2+2x_0-1\right|}{\left(x_0-1\right)^2}\)
\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{1}{6}\Rightarrow OA.OB=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{\left(2x_0^2+2x_0-1\right)^2}{3\left(x_0-1\right)^2}=\dfrac{1}{3}\Rightarrow\left(2x_0^2+2x_0-1\right)^2=\left(x_0-1\right)^2\)
\(\Leftrightarrow\left(2x_0^2+3x_0-2\right)\left(2x_0^2+x_0\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x_0=0\\x_0=-\dfrac{1}{2}\\x_0=-2\\x_0=\dfrac{1}{2}\end{matrix}\right.\)
Có 4 tiếp tuyến thỏa mãn:... (thế lần lượt các giá trị \(x_0\) vào (1) là được)
b.
Do tiếp tuyến đi qua A nên:
\(-7=\dfrac{-3}{\left(x_0-1\right)^2}\left(5-x_0\right)+\dfrac{2x_0+1}{x_0-1}\)
\(\Leftrightarrow3x_0^2-4x_0-3=0\Rightarrow\left[{}\begin{matrix}x_0=\dfrac{2+\sqrt{13}}{3}\\x_0=\dfrac{2-\sqrt{13}}{3}\end{matrix}\right.\)
Chà, nghiệm xấu quá
Lại thay giá trị của \(x_0\) vào (1) là được 2 phương trình tiếp tuyến thỏa mãn
Cho hàm số \(y=f\left(x\right)=\dfrac{x-2}{x+1}\) có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến cắt 2 đường thẳng d1:x=-1 và d2:y=1 lần lượt tại A, B sao cho bán kính đường tròn nội tiếp tam giác IAB là lớn nhất.
cho hàm số \(y=\dfrac{2x-1}{x+1}\) có đồ thị (C). Viết phương trình tiếp tuyến của (C) biết rằng tiếp tuyến đó cách điểm A(0;1) một khoảng bằng 1
\(y'=\dfrac{3}{\left(x+1\right)^2}\)
Gọi \(M\left(m;\dfrac{2m-1}{m+1}\right)\) là tiếp điểm
Phương trình tiếp tuyến tại M:
\(y=\dfrac{3}{\left(m+1\right)^2}\left(x-m\right)+\dfrac{2m-1}{m+1}\)
\(\Leftrightarrow3x-\left(m+1\right)^2y+2m^2-2m-1=0\)
Áp dụng công thức khoảng cách:
\(\dfrac{\left|-\left(m+1\right)^2+2m^2-2m-1\right|}{\sqrt{9+\left(m+1\right)^4}}=1\)
Bạn tự giải ra m nhé