Tìm m để đường thẳng d : y= m-x cắt đồ thị hàm số (C) : \(y=\dfrac{x-1}{x+1}\) tại hai điểm phân biệt A,B sao cho các tiếp tuyến của (C) tại A và B song song nhau .
Cho hàm số \(y=x^4-2x^2\) có đồ thị (C) . Hỏi có bao nhiêu tiếp tuyến của đồ thị (C) song song với trục hoành ?
Cho hàm số \(y=x^3+x^2-1\) có đồ thị (C), phương trình tiếp tuyến của (C) tại A(1;1) cắt (C) tại điểm B . Tính độ dài đoạn AB.
Tiếp tuyến của đồ thị hàm số \(y=\dfrac{2x-1}{x+1}\) đi qua điểm A(-1;4) có phương trình là :
Cho hàm số \(y=\dfrac{x+b}{ax-2}\) có hàm số (C) . Biết a,b là các giá trị thực sao cho tiếp tuyến của (C) tại điểm M(1;-2) song song với đường thẳng d: 3x+y-4=0 . Tính a+b .
Cho hai điểm M,N thuộc đồ thị của hàm số \(y=x^3-x^2+2\) có hoành độ lần lượt là \(x_M=1,x_N=2\) . Tính hệ số góc của cát tuyến MN .
Tìm tham số m để tiếp tuyến của đồ thị hàm số \(y=\dfrac{mx-1}{x-2}\) tại điểm có hoành độ bằng 1 đi qua điểm A(1;-2) .
tìm m để y=x^3-(m+1)x^2+(m-1)x+1 cắt Ox tại A(1;0), B, C phân biệt sao cho tiếp tuyến tại B và C song song với nhau
Cho hàm số y=f(x) có đạo hàm trên R và thỏa mãn f(1+3x)=2x-f(1-2x) với mọi \(x\in R\) . Lập phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ x=1 .