Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cường Đào Tấn
Xem chi tiết
Isolde Moria
15 tháng 9 2016 lúc 15:51

Quy định của hoc24 là chỉ dc dăng 1 bài trong 1 câu hỏi bạn nhé

Bảo Duy Cute
15 tháng 9 2016 lúc 16:20

bài 1 :

 Tam giác ABC có độ dài 3 cạnh là a,b,c và có chu vi là 2 
--> a + b + c = 2 

Trong 1 tam giác thì ta có: 
a < b + c 
--> a + a < a + b + c 
--> 2a < 2 
--> a < 1 

Tương tự ta có : b < 1, c < 1 

Suy ra: (1 - a)(1 - b)(1 - c) > 0 
⇔ (1 – b – a + ab)(1 – c) > 0 
⇔ 1 – c – b + bc – a + ac + ab – abc > 0 
⇔ 1 – (a + b + c) + ab + bc + ca > abc 

Nên abc < -1 + ab + bc + ca 
⇔ 2abc < -2 + 2ab + 2bc + 2ca 
⇔ a² + b² + c² + 2abc < a² + b² + c² – 2 + 2ab + 2bc + 2ca 
⇔ a² + b² + c² + 2abc < (a + b + c)² - 2 
⇔ a² + b² + c² + 2abc < 2² - 2 , do a + b = c = 2 
⇔ a² + b² + c² + 2abc < 2 

--> đpcm 

Hân  Trần
Xem chi tiết
Tamako cute
29 tháng 6 2016 lúc 14:41

Theo đề ta có: 
a+b+c=0 => c=-(a+b) (1) 
Thay (1) vao a^3+b^3+c^3 ta có: 
a3+b3+[-(a+b)]3=3ab[-(a+b)] 
<=>a3+b3-(a+b)=-3ab(a+b) 
<=> a3+ b3- a3 -3a2b- 3ab2- b3= -3a2b- 3ab2 
<=> 0= 0 
vậy ta có đpcm.

b) có a+b+c = 0 
=> a2+b2+c2+2(ab+bc+ac) = 0
mà a2+b2+c2 = 2
=> ab+bc+ac = -1
=> a2b2+b2c2+a2c2 + 2ab2c+2a2bc+2abc2 = 1
=>a2b2+b2c2+a2c2 + 2abc(b+a+c) = 1
=>a2b2+b2c2+a2c2 = 1
Ta bìn phong cái a2+b2+c2 len 
đk là
a4+b4+c4 + 2a2b2+2a2c2+2b2c2=4
=> a4+b4+c4 + 2(a2b2+a2c2+b2c2) = 4
mà ở trên là a2b2+b2c2+a2c2 = 1
=> a4+b4+c4 +1 =4
a4+b4+c4 = 3 D

k giùm nha!!!

Nguyễn Thị Hồng Ánh
Xem chi tiết
Thúy Hiền Nguyễn
Xem chi tiết
Phùng Minh Quân
13 tháng 7 2020 lúc 18:26

\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)

Khách vãng lai đã xóa
Phùng Minh Quân
13 tháng 7 2020 lúc 18:42

\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)

\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)

Khách vãng lai đã xóa
Phùng Minh Quân
13 tháng 7 2020 lúc 18:46

\(\frac{a^3}{\left(b+2c\right)^2}+\frac{b+2c}{27}+\frac{b+2c}{27}\ge\frac{a}{3}\)\(\Leftrightarrow\)\(\frac{a^3}{\left(b+2c\right)^2}\ge\frac{1}{3}a-\frac{2}{27}b-\frac{4}{27}c\)

tương tự rồi cộng lại

Khách vãng lai đã xóa
Lê Chí Cường
Xem chi tiết
Hày Cưi
Xem chi tiết
Không Tên
8 tháng 11 2018 lúc 17:51

\(a^2+b^2=2ab\)

<=>  \(a^2+b^2-2ab=0\)

<=>  \(\left(a-b\right)^2=0\)

<=>   \(a-b=0\)

<=>  \(a=b\)  (đpcm)

Không Tên
8 tháng 11 2018 lúc 18:01

\(a^3+b^3+c^3=3abc\)

<=>  \(a^3+b^3+c^3-3abc=0\)

<=>  \(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

<=>   \(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

<=>  \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

<=>  \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)

Xét:  \(a^2+b^2+c^2-ab-bc-ca=0\)

<=>  \(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

<=>  \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

<=>  \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)

<=>  \(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)

<=>  \(a=b=c\)

=>  đpcm

Không Tên
8 tháng 11 2018 lúc 18:03

cách khác:

Áp dụng BĐT AM-GM ta đc:

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu "=" xảy ra  <=>  \(a=b=c\)

c)  bạn lm tương tự

Akira Yuuki
Xem chi tiết
tthnew
27 tháng 6 2019 lúc 10:25

Really? Em thử thay a = b = 0, b = 4 thì được VT = 64?

Bình Trần Thị
Xem chi tiết
Nguyễn Thái Bình
9 tháng 12 2015 lúc 9:00

Áp dụng bdt cosi:

\(\frac{a^4}{b}+\frac{b^4}{c}+\frac{c^4}{a}\ge3\sqrt[3]{\frac{a^4}{b}.\frac{b^4}{c}.\frac{c^4}{a}}=3abc\)

nguyễn đình thành
Xem chi tiết
Thắng Nguyễn
15 tháng 5 2017 lúc 22:23

Áp dụng BĐT AM-GM ta có: 

\(a^4+bc\ge2\sqrt{a^4bc}=2a^2\sqrt{bc}\Rightarrow\frac{a^2}{a^4+bc}\le\frac{a^2}{2a^2\sqrt{bc}}\)\(=\frac{1}{2\sqrt{bc}}\)

Tương tự cho 2 BĐT còn lại ta có:

\(M\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ac}}\). Theo AM-GM có

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\) thì

\(M\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ca}}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\frac{1}{2}\cdot\frac{ab+bc+ca}{abc}\le\frac{1}{2}\cdot\frac{a^2+b^2+c^2}{abc}=\frac{1}{2}\cdot3=\frac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

Vũ Tri Hải
15 tháng 5 2017 lúc 22:22

từ GT suy ra abc >=1 và a/bc + b/ca + c/ab = 3.

áp dụng BĐT Cauchy : a4 + bc >=2a2v(bc) (v(bc) là căn bc).

nên a2/a4 + bc <=1/2v(bc).

do đó M <= 1/2.(1/v(bc) + 1/v(ca) + 1/v(ab).

ta chứng minh N = (1/v(bc) + 1/v(ca) + 1/v(ab) <=3 là xong.

thật vậy.

giả sử a <=b<=c nên 1/v(bc) <= 1/v(ca)<= 1/v(ab).

áp dụng BĐT Trê bư sep ta được (v(a) + v(b) + v(c))/3 . ((1/v(bc) + 1/v(ca) + 1/v(ab))/3 <= (v(a)/v(bc) + v(b)/v(ca) + v(c)/v(ab)/3.

ta có v(a) + v(b) + v(c) >=3 căn6(abc)>=3.

nên VT >=((1/v(bc) + 1/v(ca) + 1/v(ab))/3. (1)

lại có (x + y + z)2 <=3(x2 + y2 + z2) nên (VP)2 <= (a/bc + b/ca + c/ab)/3= 1.

hay VP <= 1 (2).

từ (1) và (2) suy ra ((1/v(bc) + 1/v(ca) + 1/v(ab))/3 <= 1 hay

(1/v(bc) + 1/v(ca) + 1/v(ab) <= 3

tức N <= 3 (đpcm).

(mình chưa biết đánh nên cố đọc nhé!)

Lầy Văn Lội
15 tháng 5 2017 lúc 23:45

em nghĩ cách của sir best r, chebyshev ngược dấu kìa