a). x-2 . ( -4 + x^2 ) >0
b). ( x^2 + 2 ). ( x+3 ) > 0
c). ( x+3 ) . ( x-4 ) > 0
a, x^3+x^2-x-1=0
b, x^3+x^2-4x-4=0
c,x^3+x^2+4=0
d, (x-1)^2(x--3)+(x-1)^2(x+3)
e,x^4-5x^3+5x^2+5x-6=0
a: \(\Leftrightarrow x^2\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2\cdot\left(x-1\right)=0\)
=>x=-1 hoặc x=1
b: \(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
hay \(x\in\left\{-1;2;-2\right\}\)
c: \(x^3+x^2+4=0\)
\(\Leftrightarrow x^3+2x^2-x^2-2x+2x+4=0\)
\(\Leftrightarrow\left(x+2\right)\cdot\left(x^2-x+2\right)=0\)
=>x+2=0
hay x=-2
e: \(\Leftrightarrow x^4-2x^3-3x^3+6x^2-x^2+2x+3x-6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-3x^2-x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)\left(x+1\right)\left(x-1\right)=0\)
hay \(x\in\left\{2;3;-1;1\right\}\)
tìm x biết
a/ (x - 4)(x + 4)- x(x + 2)=0
b/ 3x(x - 2)- x + 2 = 0
c/ 6x - 12x2 = 0
d/ 4x(3 - x)+(x - 2)(x + 2)= 0
a) (x-4)(x+4)-x(x+2)=0
x2-16-x2-2x = 0
-16 - 2x = 0
2x = -16
x = -16/2
x = -8
b) 3x(x-2)-x+2=0
(3x-1)(x-2)=0
=> x ∈ {1/3 ; 2 }
c) 6x - 12x2 = 0
6x(1-2x) = 0
=> x ∈ {0; 1/2 }
d) mình thấy có vẻ hơi sai đề nên mình ko giải được, bạn thông cảm nha
d/ 4x (3 - 1/4 x) + (x -2) ( x+ 2)
câu d bị sai đề
tìm x biết
a x^2 (2x+15)+4(2x+15)=0
b 5x(x-2)-3(x-2)=0
c 2(x+3)-x^2-3x=0
a
\(x^2\left(2x+15\right)+4\left(2x+15\right)=0\\ \Leftrightarrow\left(2x+15\right)\left(x^2+4\right)=0\\ \Leftrightarrow2x+15=0\left(x^2+4>0\forall x\right)\\ \Leftrightarrow2x=-15\\ \Leftrightarrow x=-\dfrac{15}{2}\)
b
\(5x\left(x-2\right)-3\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\5x-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0+2=2\\x=\dfrac{0+3}{5}=\dfrac{3}{5}\end{matrix}\right.\)
c
\(2\left(x+3\right)-x^2-3x=0\\ \Leftrightarrow2\left(x+3\right)-\left(x^2+3x\right)=0\\ \Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\2-x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0-3=-3\\x=2-0=2\end{matrix}\right.\)
a: =>(2x+15)(x^2+4)=0
=>2x+15=0
=>2x=-15
=>x=-15/2
b; =>(x-2)(5x-3)=0
=>x=2 hoặc x=3/5
c: =>(x+3)(2-x)=0
=>x=2 hoặc x=-3
Bài 2: giải phương trình sau
a) \(X^4\)-\(x^2\)-2=0
b) (x+1)\(^4\)-x\(^2\)+2)\(^2\)=0
c)3x\(^2\)-2x-8=0
Bài 3: giải phương trình sau
a) x\(^3\)-0,25=0
b) x\(^4\)+2x\(^3\)+x\(^2\)=0
c) x\(^3\)-1=0
d) 6x\(^2\)-7x+2=0
Mong có người giải giùm xin kẻm ơn :>
Bài 3:
b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)
hay \(x\in\left\{0;-1\right\}\)
c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)
=>x-1=0
hay x=1
d: \(\Leftrightarrow6x^2-3x-4x+2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)
hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)
1.
a) (x+3)(2x-8)≥0
b) (x-2)(5-x)>0
c) (x+1)(x+3)(x-4)≥0
d) (2x-4)(x+5)(1-x)<0
bài 1 tìm x
a)6x^2-72x=0
b)-2x^4+16x=0
c)x(x-5)-(x-3)^2=0
d)(x-2)^3-(x-2)(x^2+2x+4)=0
a) \(6x^2-72x=0\)
\(6x\left(x-12\right)=0\)
\(6x=0\) hoặc \(x-72=0\)
*) \(6x=0\)
\(x=0\)
*) \(x-12=0\)
\(x=12\)
Vậy \(x=0;x=12\)
b) \(-2x^4+16x=0\)
\(-2x\left(x^3-8\right)=0\)
\(-2x=0\) hoặc \(x^3-8=0\)
*) \(-2x=0\)
\(x=0\)
*) \(x^3-8=0\)
\(x^3=8\)
\(x=2\)
Vậy \(x=0;x=2\)
c) \(x\left(x-5\right)-\left(x-3\right)^2=0\)
\(x^2-5x-x^2+6x-9=0\)
\(x-9=0\)
\(x=9\)
d) \(\left(x-2\right)^3-\left(x-2\right)\left(x^2+2x+4\right)=0\)
\(x^3-6x^2+12x-8-x^3+8=0\)
\(-6x^2+12x=0\)
\(-6x\left(x-2\right)=0\)
\(-6x=0\) hoặc \(x-2=0\)
*) \(-6x=0\)
\(x=0\)
*) \(x-2=0\)
\(x=2\)
Vậy \(x=0;x=2\)
a)2(x-4)^2-4x(4-x)=0
b)4x^2-8x=0
c)3x^2+6x=0
d)8x^2+4x^3=0
\(a,< =>2\left(x-4\right)^2+4x\left(x-4\right)=0< =>\left(x-4\right)\left(2x-8+4x\right)=0\)\(< =>\left(x-4\right)\left(6x-8\right)=0< =>\left[{}\begin{matrix}x=4\\x=\dfrac{4}{3}\end{matrix}\right.\)
b,\(< =>4x\left(x-2\right)=0< =>\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
c,\(< =>3x\left(x+2\right)=0< =>\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
d,\(< =>4x^2\left(2+x\right)=0< =>\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Bài 2. Tìm x, biết:
a/ (x – 4)(x + 4) - x(x + 2) = 0
b/ 3x(x – 2) – x + 2 = 0
c/ 6x - 12x2 = 0
d/ 4x(3 - 14x) + (x – 2)(x + 2) = 0
\(a,\Leftrightarrow x^2-16-x^2-2x=0\\ \Leftrightarrow2x=-16\Leftrightarrow x=-8\\ b,\Leftrightarrow\left(x-2\right)\left(3x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\\ c,\Leftrightarrow6x\left(1-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\\ d,\Leftrightarrow12x-56x^2+x^2-16=0\\ \Leftrightarrow55x^2-12x+16=0\\ \Delta=144-4\cdot55\cdot16< 0\\ \Leftrightarrow x\in\varnothing\)
a) |x - 2| + |y + 3| = 0
b) |x - 2| - |x + 3| = 0
c) |x - 3/4| + |x + 5/4| = 1a: =>x-2=0 và y+3=0
=>x=2 và y=-3
b: =>|x-2|=|x+3|
=>x-2=x+3 hoặc x+3=2-x
=>2x=-1
=>x=-1/2
c: TH1: x<-5/4
Pt sẽ là -x-5/4+3/4-x=1
=>-2x-1/2=1
=>-2x=3/2
=>x=-3/4(loại)
TH2: -5/4<=x<3/4
Pt sẽ là x+5/4+3/4-x=1
=>8/4=1(loại)
TH3: x>=3/4
Pt sẽ là x-3/4+x+5/4=1
=>2x+1/2=1
=>2x=1/2
=>x=1/4(loại)
Phương trình nào tương đương với phương trình: x^2 -4 =0 ?
A. (2+x)(-x^2+2x+1)=0
B. x^2 -4x+4=0
C. (x-2)(x^2+3x+2)=0
D. căn x^2 -3 = 1