Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NGUYEN THI DIEP
Xem chi tiết
Lightning Farron
13 tháng 4 2017 lúc 18:47

Đề bài:Cho x,y,z dương thỏa mãn \(x\geq y\geq z>0\). CMR

\(\frac{x^2y}{z}+\frac{y^2z}{x}+\frac{z^2x}{y}\geq x^2+y^2+z^2\)

Giải

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(\dfrac{x^2y}{z}+\dfrac{y^2z}{x}+\dfrac{z^2x}{y}\right)\left(\dfrac{x^2z}{y}+\dfrac{y^2x}{z}+\dfrac{z^2y}{x}\right)\ge\left(x^2+y^2+z^2\right)^2\)

Vậy ta cần chứng minh \(\dfrac{x^2y}{z}+\dfrac{y^2z}{x}+\dfrac{z^2x}{y}\ge\dfrac{x^2z}{y}+\dfrac{y^2x}{z}+\dfrac{z^2y}{x}\)

Thật vậy ta có: \(\dfrac{x^2y}{z}+\dfrac{y^2z}{x}+\dfrac{z^2x}{y}-\dfrac{x^2z}{y}+\dfrac{y^2x}{z}+\dfrac{z^2y}{x}\ge0\)

\(\Leftrightarrow\dfrac{\left(xy+yz+xz\right)\left(x-y\right)\left(y-z\right)\left(x-z\right)}{xyz}\ge0\) (luôn đúng)

le diep
Xem chi tiết
Phạm Duy Phát
Xem chi tiết
Thảo Phương lớp 9D5
Xem chi tiết
Neet
27 tháng 8 2017 lúc 16:10

AM-GM thôi (:))

\(\dfrac{1}{x^3\left(2y-x\right)}+x^2+y^2\ge3\sqrt[3]{\dfrac{y^2}{x\left(2y-x\right)}}\)

Ta chỉ cần chứng minh \(\dfrac{y^2}{x\left(2y-x\right)}\ge1\).Điều này đúng vì

\(\Leftrightarrow\left(x-y\right)^2\ge0\)

Vậy ta có đpcm.Dấu = xảy ra khi x=y=1

DƯƠNG PHAN KHÁNH DƯƠNG
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
♂ Batman ♂
Xem chi tiết
nam lun
11 tháng 5 2017 lúc 18:52

Vì x,y là số dương \(\Rightarrow\left\{{}\begin{matrix}y+0,5-y< y+0,5\\x+0,5-x< x+0,5\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x^2y}{y+0,5-y}>\dfrac{x^2y}{y+0,5}\\\dfrac{xy^2}{x+0,5-x}>\dfrac{xy^2}{x+0,5}\end{matrix}\right.\)\(\Rightarrow\dfrac{x^2y}{y+0,5}+\dfrac{xy^2}{x+0,5}< \dfrac{x^2y}{y+0,5-y}+\dfrac{xy^2}{x+0,5-x}=\dfrac{x^2y}{0,5}+\dfrac{xy^2}{0,5}=2x^2y+2xy^2=2xy\left(x+y\right)=2xy\cdot1=2xy\left(1\right)\)Đặt x=0,5+m; y=0,5+m thì x+y=0,5+m+0,5-m=1(thỏa mãn đề bài)

\(\Rightarrow xy=\left(0,5+m\right)\cdot\left(0,5-m\right)=0,5\cdot0,5+0,5m-0,5m-m\cdot m=0,25-m^2\)Vì:\(m^2\ge0\Rightarrow0,25-m^2\le0,25\Rightarrow xy\le0,25\Rightarrow2xy\le0,25\cdot2=0,5\left(2\right)\)Từ (1) và (2) \(\Rightarrow\dfrac{x^2y}{y+0,5}+\dfrac{xy^2}{x+0,5}< 0,5=\dfrac{1}{2}\)

Ngọc Hạnh
Xem chi tiết
Akai Haruma
22 tháng 2 2018 lúc 19:12

Lời giải:

Ta có:

\(P=\frac{x^2+y^2}{xy}=\frac{\frac{3}{4}x^2}{xy}+\frac{\frac{x^2}{4}+y^2}{xy}\)

Áp dụng BĐT Cô-si: \(\frac{x^2}{4}+y^2\geq 2\sqrt{\frac{x^2y^2}{4}}=xy\)

\(\Rightarrow \frac{\frac{x^2}{4}+y^2}{xy}\geq \frac{xy}{xy}=1\)

Và: \(\frac{\frac{3}{4}x^2}{xy}=\frac{3x}{4y}\geq \frac{3.2y}{4y}=\frac{3}{2}\)

Do đó: \(P\geq \frac{3}{2}+1=\frac{5}{2}\Leftrightarrow P_{\min}=\frac{5}{2}\)

Dấu bằng xảy ra khi \(x=2y\)

Trung Nguyen
Xem chi tiết