tính giá trị biểu thức sau:
\(G=\dfrac{tan30^o+tan40^o+tan50^o+tan60^o}{1-2sin^210^o}\)
Rút gọn:
1, \(A=\tan x+\tan3x+\cot x+\cot3x\)
2, \(B=\tan30^o+\tan40^o+\tan50^o+\tan60^o\)
Mng giúp mình với ạ!!!!
\(A=\frac{sinx}{cosx}+\frac{cosx}{sinx}+\frac{sin3x}{cos3x}+\frac{cos3x}{sin3x}\)
\(=\frac{sin^2x+cos^2x}{sinx.cosx}+\frac{sin^23x+cos^23x}{sin3x.cos3x}=\frac{2}{2sinx.cosx}+\frac{2}{2sin3x.cos3x}\)
\(=\frac{2}{sin2x}+\frac{2}{sin6x}=\frac{2\left(sin2x+sin6x\right)}{sin2x.sin6x}=\frac{4sin4x.cos2x}{sin2x.sin6x}\)
\(=\frac{8sin2x.cos^22x}{sin2x.sin6x}=\frac{8cos^22x}{sin6x}\)
\(B=\frac{sin30}{cos30}+\frac{sin60}{cos60}+\frac{sin40}{cos40}+\frac{sin50}{cos50}=\frac{sin30.cos60+cos30.sin60}{cos30.cos60}+\frac{sin40.cos50+sin50.cos40}{cos40.cos50}\)
\(=\frac{sin90}{cos30.cos60}+\frac{sin90}{cos40.cos50}=\frac{1}{\frac{1}{2}.\frac{\sqrt{3}}{2}}+\frac{1}{\frac{1}{2}cos90+\frac{1}{2}cos10}\)
\(=\frac{4\sqrt{3}}{3}+\frac{2}{cos10}=\frac{4\sqrt{3}\left(cos10+\frac{\sqrt{3}}{2}\right)}{3cos10}=\frac{4\sqrt{3}\left(cos10+cos30\right)}{3cos10}\)
\(=\frac{8\sqrt{3}cos20.cos10}{3cos10}=\frac{8\sqrt{3}}{3}cos20\)
Không cầm máy tính cầm tay tính giá trị biểu thức của các biểu thức sau
\(I=\dfrac{cos\left(-228^o\right)cot72^o}{tan\left(-142^o\right).sn108^o}-tan18^o\\ J=2sin\left(790^o+x\right)+cos\left(1260^o-x\right)+tan\left(630^o+x\right).tan\left(1260^o-x\right)\)
Câu 1. Không dùng máy tinh,tính giá trị biểu thức:
a/ \(A=sin^234^o+\dfrac{tan48^o}{cot42^o}+sin^256^o\)
b/ B=\(cos^213^o+\dfrac{3tan26^o}{cot64^o}+cos^277^o+2cot32^o.cot58^o\)
c/\(B=\dfrac{5tan55^o}{cot35^o}-2sin^261^o-2sin^229^o\)
\(a,A=\sin^234^0+\cos^234^0+\dfrac{\cot42^0}{\cot42^0}=1+1=2\\ b,B=\left(\cos^213^0+\sin^277^0\right)+\dfrac{3\cot64^0}{\cot64^0}+2\cot32^0\cdot\tan32^0\\ B=1+3+2\cdot1=6\\ c,B=\dfrac{5\cot35^0}{\cot35^0}-2\left(\sin^261^0-\cos^261^0\right)=5-2\cdot1=3\)
Không dùng MTCT, hãy tính giá trị các biểu thức sau :
\(A=sin^245^o-2cos30^o+tan60^o\)
\(B=sin^234^o-cos^234^o.tan^234^o\\ C=sin^225^o+sin^245^o.cos60^o+sin^265^o+tan30^o\)
\(D=\frac{sin48^o}{cos42^o}-cos60^o+tan27^o.tan63^o\)
Cho biểu thức \(A=\dfrac{cos70^o-sin\alpha}{tan60^o-cos70^o}\)( 200 <\(\alpha\) < 900). Chứng minh A < 0
Sửa: \(A=\dfrac{\cos70^0-\sin\alpha}{\tan60^0-\cot70^0}\)
Vì \(\sin\alpha>\sin20^0\Leftrightarrow\cos70^0-\sin\alpha< \sin20^0-\sin20^0=0\)
Mà \(\tan60^0-\cot70^0=\tan60^0-\tan20^0>0\)
Do đó \(A< 0,\forall20^0< \alpha< 90^0\)
1. Biểu thức A = \(\frac{1}{2\sin10}-2\sin70\) có gái trị bằng bao nhiêu ?
2. Tích số cos10.cos30.cos50.cos70 = ?
3. Tích số \(cos\frac{\pi}{7}.cos\frac{4\pi}{7}.cos\frac{5\pi}{7}\) = ?
4. Tính A = \(\frac{tan30+tan40+tan50+tan60}{cos20}\)=?
5.Rút gọn biểu thức : cos54.cos4 - cos36.cos86
=> P/S : (Làm theo công thức lượng giác lớp 10 ở tất cả các câu)
Câu 3:
\(A=cos\frac{\pi}{7}.cos\frac{5\pi}{7}.cos\frac{4\pi}{7}=cos\frac{\pi}{7}.cos\left(\pi-\frac{2\pi}{7}\right).cos\frac{4\pi}{7}\)
\(A=-cos\frac{\pi}{7}.cos\frac{2\pi}{7}.cos\frac{4\pi}{7}\)
\(\Rightarrow sin\frac{\pi}{7}.A=-\frac{1}{2}.2sin\frac{\pi}{7}.cos\frac{\pi}{7}.cos\frac{2\pi}{7}.cos\frac{4\pi}{7}\)
\(\Rightarrow sin\frac{\pi}{7}.A=-\frac{1}{2}.sin\frac{2\pi}{7}.cos\frac{2\pi}{7}.cos\frac{4\pi}{7}\)
\(\Rightarrow sin\frac{\pi}{7}.A=-\frac{1}{4}sin\frac{4\pi}{7}.cos\frac{4\pi}{7}\)
\(\Rightarrow sin\frac{\pi}{7}.A=-\frac{1}{8}sin\frac{8\pi}{7}=-\frac{1}{8}sin\left(\pi+\frac{\pi}{7}\right)=\frac{1}{8}sin\frac{\pi}{7}\)
\(\Rightarrow A=\frac{1}{8}\)
Câu 4:
Đầu tiên ta chứng minh công thức:
\(tana+tanb=\frac{sina}{cosa}+\frac{sinb}{cosb}=\frac{sina.cosb+cosa.sinb}{cosa.cosb}=\frac{sin\left(a+b\right)}{cosa.cosb}\)
Áp dụng để biến đổi tử số:
\(tan30+tan60+tan40+tan50=\frac{sin90}{cos30.cos60}+\frac{sin90}{cos40.cos50}=\frac{1}{cos30.cos60}+\frac{1}{cos40.cos50}\)
\(=\frac{2}{cos90+cos30}+\frac{2}{cos90+cos10}=\frac{2}{cos30}+\frac{2}{cos10}=2\left(\frac{cos30+cos10}{cos30.cos10}\right)\)
\(=2\left(\frac{2cos20.cos10}{cos30.cos10}\right)=\frac{4.cos20}{cos30}=\frac{8\sqrt{3}}{3}.cos20\)
\(\Rightarrow A=\frac{\frac{8\sqrt{3}}{3}cos20}{cos20}=\frac{8\sqrt{3}}{3}\)
Câu 5:
\(cos54.cos4-cos36.cos86=cos54.cos4-cos\left(90-54\right).cos\left(90-4\right)\)
\(=cos54.cos4-sin54.sin4=cos\left(54+4\right)=cos58\)
Câu 1:
\(A=\frac{1}{2sin10}-2sin70=\frac{1-4sin10.sin70}{2sin10}=\frac{1+2\left(cos80-cos60\right)}{2sin10}\)
\(=\frac{1+2cos80-1}{2sin10}=\frac{2cos80}{2sin10}=\frac{sin10}{sin10}=1\)
Câu 2:
\(cos10.cos30.cos50.cos70=cos10.cos30.\frac{1}{2}\left(cos120+cos20\right)\)
\(=\frac{1}{2}cos30\left(cos10.cos120+cos10.cos20\right)\)
\(=\frac{1}{2}cos30\left(cos10.cos120+\frac{1}{2}\left(cos30+cos10\right)\right)\)
\(=\frac{1}{2}cos30\left(cos10.cos120+\frac{1}{2}cos30+\frac{1}{2}cos10\right)\)
\(=\frac{1}{2}.\frac{\sqrt{3}}{2}\left(-\frac{1}{2}cos10+\frac{1}{2}\frac{\sqrt{3}}{2}+\frac{1}{2}cos10\right)\)
\(=\frac{3}{16}\)
Thực hiện phép tính
a) \(\tan40^o.\cot40^o+\frac{\sin50^o}{\cos40^o}\)
b) \(\cot44^o.\cot45^o.\cot46^o\)
c)\(\left(1+\tan^225^o\right).\sin^265^o\)
d) \(\tan35^o.\tan40^o.\tan45^o.\tan50^o.\tan55^o\)
e) \(\cos^220^o+\cos^240^o+\cos^250^o+\cos^270^o\)
f) \(\sin^227^o+\cos^227^o+\tan27^o-\cot73^o\)
a/ \(\tan40.\cot40+\frac{\sin50}{\cos40}\)
\(=1+\frac{\cos40}{\cos40}=1+1=2\)
1.Tính giá trị biểu thức:
\(A=2sin^275^o+2sin^215^o-cos50^o-cos40^o+cot40^o.cot50^o\)
\(B=cos^225^o+cos^265^o-3sin^261^o+3sin^229^o+cos^2x+tan^2x.cos^2x\)
1. So sánh \(\sqrt{2011}\)+ \(\sqrt{2013}và2.\sqrt{2012}\)
2.Giải phương trình \(\sqrt{x+2.\sqrt{x-1}}+\sqrt{x-2.\sqrt{x-1}}=2\)
3. TÍnh giá trị biểu thức: A = \(\tan^230^o.\cos^230^o+2.\sin60^o+tan45^o-\tan60^o+\cos^230^o\)