Biểu thức này chỉ rút gọn được khi mẫu là \(1-2sin^210^0\)
\(tan40+tan50=\dfrac{sin40}{cos40}+\dfrac{sin50}{cos50}=\dfrac{sin40.cos50+cos50.sin40}{cos40.cos50}\)
\(=\dfrac{sin\left(40+50\right)}{\dfrac{1}{2}\left(cos90+cos10\right)}=\dfrac{2}{cos10}\)
\(\Rightarrow tan30+tan60+tan40+tan50=\dfrac{\sqrt{3}}{3}+\sqrt{3}+\dfrac{2}{cos10}\)
\(=\dfrac{4\sqrt{3}}{3}+\dfrac{2}{cos10}=\dfrac{4\sqrt{3}cos10+6}{3.cos10}=\dfrac{4\sqrt{3}\left(cos10+\dfrac{\sqrt{3}}{2}\right)}{3.cos10}\)
\(=\dfrac{4\sqrt{3}\left(cos10+cos30\right)}{3cos10}=\dfrac{8\sqrt{3}cos20.cos10}{3cos10}=\dfrac{8\sqrt{3}}{3}cos20\)
\(\Rightarrow G=\dfrac{\dfrac{8\sqrt{3}}{3}cos20}{1-2sin^210}=\dfrac{\dfrac{8\sqrt{3}}{3}cos20}{cos20}=\dfrac{8\sqrt{3}}{3}\)