tính các giá trị lượng giác của góc x khi biết \(\cos\dfrac{\alpha}{2}=\dfrac{4}{5}\) và 0<x<\(\dfrac{\pi}{2}\)
Không dùng máy tinh hãy tính:
\(sin\left(\alpha-\frac{\pi}{3}\right)cos\left(\frac{\pi}{4}-\alpha\right)+cos\left(\alpha-\frac{\pi}{3}\right)sin\left(\frac{\pi}{4}-\alpha\right)\)
Nếu \(5\sin\alpha=3\sin\left(\alpha+2\beta\right)\)thì \(\tan\left(\alpha+\beta\right)\)=???
Cho tan \(\alpha\) + cot \(\alpha\) = 3 . Tìm tan anpha, cot anpha, sin anpha, cos anpha, cos (\(\frac{3\pi}{2}-\alpha\)), sin(\(2\pi+\alpha\)), tan\(\left(\pi-\alpha\right)\), cot\(\left(\pi+\alpha\right)\) . Với \(\alpha\) là góc nhọn
Trên đường tròn lượng giác góc A lấy điểm M sao cho số đo lượng giác \(\stackrel\frown{AM}\)=\(\alpha\) . Có bao nhiêu điểm M biết \(\alpha=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\left(k\in Z\right)?\)
1/ Biểu thức: (nêu cách làm)
A = có kết quả thu gọn bằng: A.\(-\sin\alpha\) B.\(\sin\alpha\) C.\(-\cos\alpha\) D. \(\cos\alpha\) \(\cos\left(\alpha+26\pi\right)-2\sin\left(\alpha-7\pi\right)-\cot1,5\pi-\cos\left(\alpha+\frac{2003\pi}{2}\right)+\cos\left(\alpha-1,5\pi\right).\cot\left(\alpha-8\pi\right)\)
rút gọn các biểu thức sau
A=\(\frac{tan\alpha+tanb}{tan\left(a+b\right)}-\frac{tan\alpha-tanb}{tan\left(a-b\right)}\)
B=\(\frac{cos^3x-cos3x}{cosx}+\frac{sin^3+sin3x}{sinx}\)
cm 0<=α<=π thì (2cosα-1)^2-4sin^2(α/2-π/4)>(\(\left(\sqrt{2sin\alpha}-2\right)\left(3-cos2\alpha\right)\)
Câu 1 : chứng minh rằng : \(\frac{sina+sin2a+sin3a}{cosa+cos2a+cos3a}=tan2a\)
Câu 2 : chứng minh : \(cos^2\left(\alpha-\frac{\pi}{4}\right)-sin^2\left(\alpha-\frac{\pi}{4}\right)=sin2\alpha\)