Tìm min của P= \(\left(2x-y\right)^2+\left(x+1\right)^2+3y^2-12y+2026\)
giải hpt:
a) \(\left\{{}\begin{matrix}4x+9y=6\\3x^2+6xy-x+3y=0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(x+y+2\right)\left(2x+2y-1\right)=0\\3x^2-32y^2+5=0\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}2x^2-xy+3y^2=7x+12y-1\\x-y+1=0\end{matrix}\right.\)
tìm x,y thỏa mãn :
\(\left\{{}\begin{matrix}\sqrt{x+y+1}+1=4\left(x+y\right)^2+\sqrt{3x+3y}\\12x\left(2x^2+3y+7xy\right)=-1-12y^2\left(3+5x\right)\end{matrix}\right.\)
tìm x,y thuộc z
a. \(4x^2+3y^2+3x+12y+5=0\)
b.\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\)
a/ Ta có : \(3y^2+12y+\left(4x^2+3x+5\right)=0\)
Xét \(\Delta'=6^2-3\left(4x^2+3x+5\right)=-12x^2-9x+21\)
Để pt trên có nghiệm thì \(\Delta'\ge0\Leftrightarrow-12x^2-9x+21\ge0\Leftrightarrow-\frac{7}{4}\le x\le1\)
Vì x là nghiệm nguyên nên \(0\le x\le1\)
Do đó x = 0 hoặc x = 1
Nếu x = 0 thì \(y_1=\frac{-6-\sqrt{21}}{3}\) (loại) , \(y_2=\frac{-6+\sqrt{21}}{3}\) (loại)
Nếu x = 1 thì y = -2 (nhận)
Vậy (x;y) = (1;-2)
Bài 1: Tìm x:
a) \(x^2+3y^2+2z^2-2x+12y+4z+15=0\)
Bài 2: Tìm Min
\(A=x^2-4xy+5y^2+10x-22y+28\)
\(B=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)+15\)
Bài 1:
\(x^2+3y^2+2z^2-2x+12y+4z+15=0\)
\(\Leftrightarrow x^2-2x+1+3y^2+12y+12+2z^2+4z+2=0\)
\(\Leftrightarrow\left(x-1\right)^2+3\left(y^2+4y+4\right)+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2=0\)
Dễ thấy: \(\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2\ge0\)
Xảy ra khi \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\3\left(y+2\right)^2=0\\2\left(z+1\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\\z=-1\end{matrix}\right.\)
Bài 2:
a)\(A=x^2-4xy+5y^2+10x-22y+28\)
\(=x^2-4xy+10x+4y^2-20y+25+y^2-2y+1+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Xảy ra khi \(\left\{{}\begin{matrix}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
b)\(B=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)+15\)
\(=\left(x^2-5x+4\right)\left(x^2-5x+6\right)+15\)
Đặt \(t=x^2-5x+4\) thì ta có:
\(t\left(t+2\right)+15=t^2+2t+1+14\)
\(=\left(t+1\right)^2+14\ge14\)
Xảy ra khi \(t=-1 \)\(\Rightarrow x^2-5x+4=-1\Rightarrow x=\dfrac{5\pm\sqrt{5}}{2}\)
Bài 1: Tìm min và max của \(A=x\left(x^2-6\right)\) biết \(0\le x\le3\)
Baì 2: Tìm max của \(A=\left(3-x\right)\left(4-y\right)\left(2x+3y\right)\) biết \(0\le x\le3\) và \(0\le y\le4\)
Bài 3: Cho a, b, c>0 và a+b+c=1. Tìm min của \(A=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)
Bài 4: Cho 0<x<2. Tìm min của \(A=\frac{9x}{2-x}+\frac{2}{x}\)
Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đặt a+b=x;b+c=y;c+a=z
\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)
Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)
\(\left\{{}\begin{matrix}\left(m+2\right)x+3y=4m-1\\2x-y=3\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất (x,y) thỏa mãn `y^2 -3x^2 +8x` đạt Min
tìm x;y
a) \(4x^2+13y+12xy-18y-4x+10\)
b) \(4x^2+12xy+9y^2+4y^2-18y-4x+10\)
c) \(\left(2x+3y\right)^2-2\left(2x+3y\right)+1+4y^2-12y+9\)
d) \(\left(2x+3y-1\right)+\left(2y-3\right)^2=0\)
c: =>(2x+3y-1)^2+(2x-3y)=0
=>2x-3y=0 và 2x+3y=1
=>x=1/4; y=1/6
d: =>2y-3=0 và 2x+3y-1=0
=>y=3/2 và 2x=1-3y=1-9/2=-7/2
=>x=-7/4 và y=3/2
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}2+6y=\frac{x}{y}-\sqrt{x-2y}\\\sqrt{x+\sqrt{x-2y}}=x+3y-2\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2-7y+2\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}x^2\left(y+1\right)=6y-2\\x^4y^2+2x^2y^2+y\left(x^2+1\right)=12y^2-1\end{matrix}\right.\)
Giải HPT
\(\left\{{}\begin{matrix}2x^2-xy+3y^2=7x+12y-1\\x-y+1=0\end{matrix}\right.\)
\(PT\left(2\right)\Leftrightarrow x=y-1\\ PT\left(1\right)\Leftrightarrow2\left(y-1\right)^2+y\left(1-y\right)+3y^2=7\left(y-1\right)+12y-1\\ \Leftrightarrow2y^2-11y+5=0\\ \Leftrightarrow\left[{}\begin{matrix}y=5\Leftrightarrow x=4\\y=\dfrac{1}{2}\Leftrightarrow x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy ...