Bài 1:
\(x^2+3y^2+2z^2-2x+12y+4z+15=0\)
\(\Leftrightarrow x^2-2x+1+3y^2+12y+12+2z^2+4z+2=0\)
\(\Leftrightarrow\left(x-1\right)^2+3\left(y^2+4y+4\right)+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2=0\)
Dễ thấy: \(\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2\ge0\)
Xảy ra khi \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\3\left(y+2\right)^2=0\\2\left(z+1\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\\z=-1\end{matrix}\right.\)
Bài 2:
a)\(A=x^2-4xy+5y^2+10x-22y+28\)
\(=x^2-4xy+10x+4y^2-20y+25+y^2-2y+1+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Xảy ra khi \(\left\{{}\begin{matrix}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
b)\(B=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)+15\)
\(=\left(x^2-5x+4\right)\left(x^2-5x+6\right)+15\)
Đặt \(t=x^2-5x+4\) thì ta có:
\(t\left(t+2\right)+15=t^2+2t+1+14\)
\(=\left(t+1\right)^2+14\ge14\)
Xảy ra khi \(t=-1 \)\(\Rightarrow x^2-5x+4=-1\Rightarrow x=\dfrac{5\pm\sqrt{5}}{2}\)