tính nhanh:
B=\(\dfrac{1}{18}\)+\(\dfrac{1}{54}\)+\(\dfrac{1}{108}\)+....+\(\dfrac{1}{990}\)
tính
F = \(\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\)
\(F=\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\)
\(F=\dfrac{1}{3.6}+\dfrac{1}{6.9}+\dfrac{1}{9.12}+....+\dfrac{1}{30.33}\)
\(F=\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{12}+...+\dfrac{1}{30}-\dfrac{1}{33}\)
\(F=\dfrac{1}{3}-\dfrac{1}{30}\)
\(F=\dfrac{3}{10}\)
Thử làm xem , không biết đúng không nhé !
\(F=\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\)
\(F=\dfrac{1}{3.6}+\dfrac{1}{6.9}+\dfrac{1}{9.12}+...+\dfrac{1}{30.33}\)
\(F=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{12}+...+\dfrac{1}{30}-\dfrac{1}{33}\right)\)
\(F=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{33}\right)\)
\(F=\dfrac{1}{3}.\dfrac{10}{33}\)
\(F=\dfrac{10}{99}\)
\(F=\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+.....+\dfrac{1}{990}\)
\(F=\dfrac{1}{3.6}+\dfrac{1}{6.9}+\dfrac{1}{9.12}+......+\dfrac{1}{30.33}\)
\(F=\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{12}+.....+\dfrac{1}{30}-\dfrac{1}{33}\)
\(F=\dfrac{1}{3}-\dfrac{1}{33}\)
\(F=\dfrac{10}{33}\)
tính
B = \(\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\)
\(B=\dfrac{1}{18}+\dfrac{1}{54}+...+\dfrac{1}{990}\)
\(\Rightarrow B=\dfrac{1}{3.6}+\dfrac{1}{6.9}+...+\dfrac{1}{30.33}\)
\(\Rightarrow B=\dfrac{1}{3}\left(\dfrac{3}{3.6}+\dfrac{3}{6.9}+...+\dfrac{3}{30.33}\right)\)
\(\Rightarrow B=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{30}-\dfrac{1}{33}\right)\)
\(\Rightarrow B=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{33}\right)\)
\(\Rightarrow B=\dfrac{1}{3}.\dfrac{10}{33}\)
\(\Rightarrow B=\dfrac{10}{99}\)
Vậy...
\(B=\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\)
\(\Leftrightarrow B=\dfrac{1}{3.6}+\dfrac{1}{6.9}+\dfrac{1}{9.12}+..+\dfrac{1}{30.33}\)
\(\Leftrightarrow B=\left(\dfrac{1}{3}-\dfrac{1}{6}\right)+\left(\dfrac{1}{6}-\dfrac{1}{9}\right)+...+\left(\dfrac{1}{30}-\dfrac{1}{33}\right)\)
\(\Leftrightarrow B=\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+\dfrac{1}{9}-...+\dfrac{1}{30}-\dfrac{1}{33}\)
\(\Leftrightarrow B=\dfrac{1}{3}-\dfrac{1}{33}\)
\(\Leftrightarrow B=\dfrac{10}{33}\).
Thực hiện phép trừ \(\dfrac{1}{x-3}-\dfrac{1}{x}\) rồi áp dụng tính nhanh vào biểu thức:
\(B=\dfrac{1}{x^2-3x}+\dfrac{1}{x^2-9x+18}+\dfrac{1}{x^2-15x+54}+\dfrac{1}{x^2-21x+108}\)
\(\dfrac{1}{x-3}-\dfrac{1}{x}=\dfrac{x-\left(x-3\right)}{x\left(x-3\right)}=\dfrac{x-x+3}{x\left(x-3\right)}=\dfrac{3}{x\left(x-3\right)}\)
\(B=\dfrac{1}{x^2-3x}+\dfrac{1}{x^2-9x+18}+\dfrac{1}{x^2-15x+54}+\dfrac{1}{x^2-21x+108}\)
\(=\dfrac{1}{x\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-6\right)}+\dfrac{1}{\left(x-6\right)\left(x-9\right)}+\dfrac{1}{\left(x-9\right)\left(x-12\right)}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{x\left(x-3\right)}+\dfrac{3}{\left(x-3\right)\left(x-6\right)}+\dfrac{3}{\left(x-6\right)\left(x-9\right)}+\dfrac{3}{\left(x-9\right)\left(x-12\right)}\right)\)
\(=\dfrac{1}{3}\left(-\dfrac{1}{x}+\dfrac{1}{x-3}-\dfrac{1}{x-3}+\dfrac{1}{x-6}-\dfrac{1}{x-6}+\dfrac{1}{x-9}-\dfrac{1}{x-9}+\dfrac{1}{x-12}\right)\)
\(=\dfrac{1}{3}\left(-\dfrac{1}{x}+\dfrac{1}{x-12}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{-\left(x-12\right)+x}{x\left(x-12\right)}\)
\(=\dfrac{4}{x\left(x-12\right)}\)
1,Tính
a, A = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + . . . + \(\dfrac{1}{2017.2018}\)
b,B = \(\dfrac{5}{2.4}\) + \(\dfrac{5}{4.6}\) + \(\dfrac{5}{6.8}\) + . . . + \(\dfrac{5}{2016.2018}\)
c. C = \(\dfrac{1}{18}\) + \(\dfrac{1}{54}\) + \(\dfrac{1}{108}\) + . . . + \(\dfrac{1}{990}\)
a, A = 1 - 1/2 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/2017 - 1/2018
A = 1 - 1/2018 = 2017/2018
b, B = 5/2 . ( 1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 + ... + 1/2016 -1/2018)
B= 5/2 . ( 1/2 - 1/ 2018 )
B = 504/1009
c, C = 1/3.6 + 1/ 6.9 + 1/ 9.12 + ... + 1/ 30.33
C= 1/3 - 1/6 + 1/6 - 1/ 9 + 1/9 - 1/12 + ... + 1/30 - 1/33
C = 1/3 - 1/33
C= 10/33
phan B mk quên nhân với 5/2
lấy 5/2 . 504/1009 = 1260/1009
a) \(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2017.2018}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\)
\(=1-\dfrac{1}{2018}=\dfrac{2017}{2018}.\)
b) \(B=\dfrac{5}{2.4}+\dfrac{5}{4.6}+\dfrac{5}{6.8}+...+\dfrac{5}{2016.2018}\)
\(=2,5\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{2016.2018}\right)\)
\(=2,5\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2016}-\dfrac{1}{2018}\right)\)
\(=2,5\left(\dfrac{1}{2}-\dfrac{1}{2018}\right)=\dfrac{1260}{1009}.\)
c) \(C=\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\)
=>\(3C=\dfrac{3}{3.6}+\dfrac{3}{6.9}+\dfrac{3}{9.12}+...+\dfrac{1}{30.33}\)
\(=\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{30}-\dfrac{1}{33}\)
\(=\dfrac{1}{3}-\dfrac{1}{33}=\dfrac{10}{33}\)
=> \(C=\dfrac{10}{33}:3=\dfrac{10}{99}.\)
Tính Nhanh:
B=\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{8}\)+\(\dfrac{1}{16}\)+\(\dfrac{1}{32}\)+\(\dfrac{1}{64}\)
Giúp mình với mình cần gấp ạ
\(B=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)
=>\(B=\dfrac{32}{64}+\dfrac{16}{64}+\dfrac{6}{64}+\dfrac{2}{64}+\dfrac{1}{64}\)
=>\(B=\dfrac{32+16+6+2+1}{64}\)
=>\(B=\dfrac{63}{64}\)
\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^6}\)
\(2B=1+\dfrac{1}{2}+...+\dfrac{1}{2^5}\)
\(\Rightarrow2B-B=1-\dfrac{1}{2^6}\)
\(\Rightarrow B=1-\dfrac{1}{2^6}=1-\dfrac{1}{64}=\dfrac{63}{64}\)
Tính :
a. F = \(\dfrac{4}{2.4}+\dfrac{4}{4.6}+\dfrac{4}{6.8}+....+\dfrac{4}{2008.2010}\)
b. C = \(\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+....+\dfrac{1}{990}\)
c. T = \(1+\dfrac{1}{2}.\left(1+2\right)+\dfrac{1}{3}.\left(1+2+3\right)+....+\dfrac{1}{16}.\left(1+2+3+....+16\right)\)
d. H = \(\dfrac{7}{4}.\left(\dfrac{33}{12}+\dfrac{3333}{2020}+\dfrac{333333}{303030}+\dfrac{33333333}{42424242}\right)\)
( Các bạn giúp mk , làm được 1 câu cũng được , làm hết thì càng tốt )
\(b,C=\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\\ =\dfrac{1}{3.6}+\dfrac{1}{6.9}+\dfrac{1}{9.12}+...+\dfrac{1}{30.33}\\ =\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{12}+...+\dfrac{1}{30}-\dfrac{1}{33}\\ =\dfrac{1}{3}-\dfrac{1}{33}\\ =\dfrac{11}{33}-\dfrac{1}{33}=\dfrac{10}{33}\)
a.F=\(\dfrac{4}{2.4}\)+\(\dfrac{4}{4.6}\)+\(\dfrac{4}{6.8}\)+...+\(\dfrac{4}{2008.2010}\)
F=\(\dfrac{2.2}{2.4}\)+\(\dfrac{2.2}{4.6}\)+\(\dfrac{2.2}{6.8}\)+...+\(\dfrac{2.2}{2008.2010}\)
F=2.(\(\dfrac{2}{2.4}\)+\(\dfrac{2}{4.6}\)+\(\dfrac{2}{6.8}\)+...+\(\dfrac{2}{2008.2010}\))
F=2.(\(\dfrac{1}{2}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{8}\)+...+\(\dfrac{1}{2008}\)-\(\dfrac{1}{2010}\))
F=2.(\(\dfrac{1}{2}\)-\(\dfrac{1}{2010}\))
F=\(\dfrac{1004}{1005}\)
b, C=\(\dfrac{1}{18}\)+\(\dfrac{1}{54}\)+....+\(\dfrac{1}{990}\)
\(\Rightarrow\)C=\(\dfrac{1}{3.6}\)+\(\dfrac{1}{6.9}\)+...+\(\dfrac{1}{30.33}\)
=>3C=3( \(\dfrac{1}{3.6}\)+\(\dfrac{1}{6.9}\)+...+\(\dfrac{1}{30.33}\))
=>3C=\(\dfrac{3}{3.6}\)+\(\dfrac{3}{6.9}\)+....+\(\dfrac{3}{30.33}\)
=> 3C=\(\dfrac{1}{3}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{9}\)+...+\(\dfrac{1}{30}\)-\(\dfrac{1}{33}\)
=> 3C= \(\dfrac{1}{3}\)-\(\dfrac{1}{33}\)
=>3C=\(\dfrac{10}{33}\)
=> C=\(\dfrac{10}{33}\):3
=> C=\(\dfrac{10}{99}\)
a, F=4/2.4+4/4/6+4/6.8+......+4/2008.2010
=> F= 4/2.(2/2.4+2/4.6+2/6.8+......+2/2008/2010
=> F= 4/2. ( 1/2-1/4+1/4-1/6+1/6-1/8+......+1/2008-1/2010
=> F=4/2.( 1/2-1/2010)
=> F= 4/2. 502/1005
=> F= \(\dfrac{1004}{1005}\)
1/Tính : A = \(\dfrac{1}{3}-\dfrac{1}{18}-\dfrac{1}{54}-\dfrac{1}{108}-\dfrac{1}{270}-\dfrac{1}{378}\)
2/Tìm các số nguyên tố x, y sao cho : 51x + 26y = 2000
Bài 1:
Ta có:
\(A=\dfrac{1}{3}-\dfrac{1}{18}-\dfrac{1}{54}-\dfrac{1}{108}-\dfrac{1}{270}-\dfrac{1}{378}\)
\(=\dfrac{1}{3}-\left(\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+\dfrac{1}{270}+\dfrac{1}{378}\right)\)
\(=\dfrac{1}{3}-\left(\dfrac{1}{3.6}+\dfrac{1}{6.9}+\dfrac{1}{9.12}+...+\dfrac{1}{18.21}\right)\)
\(=\dfrac{1}{3}-\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{18}-\dfrac{1}{21}\right)\)
\(=\dfrac{1}{3}-\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{21}\right)=\dfrac{1}{3}-\dfrac{1}{3}.\dfrac{6}{21}\)
\(=\dfrac{1}{3}-\dfrac{2}{21}=\dfrac{5}{21}\)
Vậy \(A=\dfrac{5}{21}\)
Bài 2:
Ta có: \(51x+26y=2000\)
Mà \(\left\{{}\begin{matrix}26y⋮2\\2000⋮2\end{matrix}\right.\) \(\Leftrightarrow51x⋮2\)
\(\left(51;2\right)=1\Rightarrow x⋮2\)
Mặt khác \(x\) là số nguyên tố nên \(x=2\)
Khi đó:
\(51.2+26y=2000\Leftrightarrow y=73\) (thỏa mãn)
Vậy các số nguyên tố \(\left(x,y\right)=\left(2;73\right)\)
1) Rút Gọn Các Biểu Thức Sau:
a) A = 20 + 21 + 22 + ... + 22010
b) B = 1 - 3 + 32 - 33 + ... + 3100
2) Tính Tổng Phân Số Sau:
\(\dfrac{1}{18}\) + \(\dfrac{1}{54}\) + \(\dfrac{1}{108}\) + ... + \(\dfrac{1}{990}\)
a) Ta có :
\(A=1+2+2^2+2^3+....................+2^{2010}\) (\(2010\) số hạng)
\(2A=2+2^2+............+2^{2010}+2^{2011}\)
\(\Rightarrow2A-A=\left(2+2^2+..........+2^{2011}\right)-\left(1+2+.............+2^{2010}\right)\)
\(A=2^{2011}-1\)
b) Ta có :
\(B=1-3+3^2-3^3+...............+3^{100}\)(\(100\) số hạng)
\(3B=3-3^2+3^3+.....+3^{99}-3^{100}+3^{101}\)
\(\Rightarrow3B+B=\left(1-3+.......+3^{100}\right)+\left(3-3^2+....-3^{100}+3^{101}\right)\)
\(4B=3^{101}+1\)
~ Chúc bn học tốt ~
2)
\(\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\)
\(=\dfrac{1}{3.6}+\dfrac{1}{6.9}+\dfrac{1}{9.12}+...+\dfrac{1}{30.33}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{3.6}+\dfrac{3}{6.9}+\dfrac{3}{9.12}+...+\dfrac{3}{30.33}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{12}+...+\dfrac{1}{30}-\dfrac{1}{33}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{33}\right)\)
\(=\dfrac{1}{3}.\dfrac{10}{33}\)
\(=\dfrac{10}{99}\)
\(\dfrac{1}{24}+\dfrac{1}{60}+\dfrac{1}{240}+...+\dfrac{1}{990}\)
\(2.B=\dfrac{2}{6}+\dfrac{2}{14}+\dfrac{2}{60}+...+\dfrac{2}{990}\)
\(2B=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{9.10.11}\)
\(2B=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{9.10}-\dfrac{1}{10.11}\)
\(2B=\dfrac{1}{1.2}-\dfrac{1}{10.11}\)
\(B=\dfrac{27}{110}\)
Tính:
a. \(5\sqrt{2}-2\sqrt{48}+6\sqrt{75}-\sqrt{108}\)
b.\(2\sqrt{147}-\dfrac{3}{32}\sqrt{192}+\dfrac{4}{18}\sqrt{243}-\dfrac{1}{10}\sqrt{300}\)
c. \(-\dfrac{1}{2}\sqrt{108}+\dfrac{1}{15}\sqrt{75}-\dfrac{1}{22}\sqrt{363}+\sqrt{12}\)
d. \(\dfrac{5}{8}\sqrt{48}-\dfrac{1}{33}\sqrt{363}+\dfrac{3}{14}\sqrt{147}-\dfrac{1}{4}\sqrt{192}\)
e. \(\dfrac{3}{2}\sqrt{12}+\dfrac{7}{5}\sqrt{75}-\dfrac{9}{10}\sqrt{300}+\dfrac{11}{6}\sqrt{108}\)
a: \(5\sqrt{2}-8\sqrt{3}+30\sqrt{3}-6\sqrt{3}=5\sqrt{2}+16\sqrt{3}\)
b: \(=14\sqrt{3}-\dfrac{3}{32}\cdot8\sqrt{3}+\dfrac{4}{18}\cdot9\sqrt{3}-\dfrac{1}{10}\cdot10\sqrt{3}\)
\(=14\sqrt{3}-\dfrac{3}{4}\sqrt{3}+2\sqrt{3}-1\sqrt{3}=\dfrac{57}{4}\sqrt{3}\)
c: \(=\dfrac{-1}{2}\cdot6\sqrt{3}+\dfrac{1}{15}\cdot5\sqrt{3}-\dfrac{1}{22}\cdot11\sqrt{3}+2\sqrt{3}\)
\(=-3\sqrt{3}+\dfrac{1}{3}\sqrt{3}-\dfrac{1}{2}\sqrt{3}+2\sqrt{3}=-\dfrac{7}{6}\sqrt{3}\)
d: \(=\dfrac{5}{8}\cdot4\sqrt{3}-\dfrac{1}{33}\cdot11\sqrt{3}+\dfrac{3}{14}\cdot7\sqrt{3}-\dfrac{1}{4}\cdot8\sqrt{3}\)
\(=\dfrac{5}{2}\sqrt{3}-\dfrac{1}{3}\sqrt{3}+\dfrac{3}{2}\sqrt{3}-2\sqrt{3}=\dfrac{5}{3}\sqrt{3}\)