Chứng minh: sinx.\(cos^3x-sin^3x.cosx=\dfrac{sin4x}{4}\)
Chứng minh các đẳng thức:
\(cos^3xsinx-sin^3xcosx=\dfrac{1}{4}sin4x\)
\(sin^4x+cos^4x=\dfrac{1}{4}\left(3+cos4x\right)\)
\(cos^3xsinx-sin^3xcosx=sinx.cosx\left(cos^2x-sin^2x\right)=\dfrac{1}{2}sin2x.cos2x=\dfrac{1}{4}sin4x\)
\(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=1-\dfrac{1}{2}\left(2sinx.cosx\right)^2=1-\dfrac{1}{2}sin^22x\)
\(=1-\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2}cos4x\right)=\dfrac{3}{4}+\dfrac{1}{4}cos4x=\dfrac{1}{4}\left(3+cos4x\right)\)
Chứng minh:cos^3x.sinx - sin^3x.cosx = sin4x/4
\(cos^3x.sinx-sin^3x.cosx=sinx.cosx\left(cos^2x-sin^2x\right)\)
\(=\frac{1}{2}sin2x.cos2x=\frac{1}{4}sin4x\)
Chứng minh đẳng thức sau
\(\dfrac{cos^3x-cos3x}{cosx} + \dfrac{sin^3x+sin3x}{sinx} = 3\)
\(\frac{cos^3x-cos3x}{cosx}+\frac{sin^3x+sin3x}{sinx}=cos^2x-\frac{cos3x}{cosx}+sin^2x+\frac{sin3x}{sinx}\)
\(=1+\frac{sin3x.cosx-cos3x.sinx}{sinx.cosx}=1+\frac{sin\left(3x-x\right)}{\frac{1}{2}sin2x}=1+\frac{2sin2x}{sin2x}=3\)
\(\dfrac{sinx+cosx}{sinx}=\dfrac{sinx+cos^2\dfrac{x}{2}-sin^2\dfrac{x}{2}}{2cos\dfrac{x}{2}sin\dfrac{x}{2}}\)
\(0< x< 90\), chứng minh
\(cosx=cos2.\left(\dfrac{x}{2}\right)=cos^2\dfrac{x}{2}-sin^2\dfrac{x}{2}\)
\(sinx=sin2\left(\dfrac{x}{2}\right)=2sin\dfrac{x}{2}cos\dfrac{x}{2}\)
\(\Rightarrow\dfrac{sinx+cosx}{sinx}=\dfrac{sinx+cos^2\dfrac{x}{2}-sin^2\dfrac{x}{2}}{2sin\dfrac{x}{2}cos\dfrac{x}{2}}\)
Chứng minh các đồng nhất thức :
a) \(\dfrac{1-\cos x+\cos2x}{\sin2x-\sin x}=\cot x\)
b) \(\dfrac{\sin x+\sin\dfrac{x}{2}}{1+\cos x+\cos\dfrac{x}{2}}=\tan\dfrac{x}{2}\)
c) \(\dfrac{2\cos2x-\sin4x}{2\cos2x+\sin4x}=\tan^2\left(\dfrac{\pi}{4}-x\right)\)
d) \(\tan x-\tan y=\dfrac{\sin\left(x-y\right)}{\cos x\cos y}\)
1) \(\dfrac{1-cosx+cos2x}{sin2x-sinx}=cotx\)
\(VT=\dfrac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}\)
\(VT=\dfrac{cosx\left(2cos-1\right)}{sinx\left(2cosx-1\right)}\)
\(VT=\dfrac{cosx}{sinx}=cotx=VP\) ( đpcm )
b) \(\dfrac{sinx+sin\dfrac{x}{2}}{1+cosx+cos\dfrac{x}{2}}=tan\dfrac{x}{2}\)
\(VT=\dfrac{sin\left(2.\dfrac{x}{2}\right)+sin\dfrac{x}{2}}{1+cos\left(2.\dfrac{x}{2}\right)+cos\dfrac{x}{2}}\)
\(VT=\dfrac{2sin\dfrac{x}{2}.cos\dfrac{x}{2}+sin\dfrac{x}{2}}{1+2cos^2\dfrac{x}{2}-1+cos\dfrac{x}{2}}\)
\(VT=\dfrac{2sin\dfrac{x}{2}.cos\dfrac{x}{2}+sin\dfrac{x}{2}}{2cos^2\dfrac{x}{2}+cos\dfrac{x}{2}}\)
\(VT=\dfrac{sin\dfrac{x}{2}\left(2cos\dfrac{x}{2}+1\right)}{cos\dfrac{x}{2}\left(2cos\dfrac{x}{2}+1\right)}\)
\(VT=\dfrac{sin\dfrac{x}{2}}{cos\dfrac{x}{2}}=tan\dfrac{x}{2}=VP\) ( đpcm )
c) \(\dfrac{2cos2x-sin4x}{2cos2x+sin4x}=tan^2\left(\dfrac{\pi}{4}-x\right)\)
\(VT=\dfrac{2cos2x-sin\left(2.2x\right)}{2cos2x+sin\left(2.2x\right)}\)
\(VT=\dfrac{2cos2x-2sin2x.cos2x}{2cos2x+2sin2x.cos2x}\)
\(VT=\dfrac{2cos2x\left(1-sin2x\right)}{2cos2x\left(1+sin2x\right)}\)
\(VT=\dfrac{1-sin2x}{1+sin2x}\)
\(VP=tan^2\left(\dfrac{\pi}{4}-x\right)=\dfrac{1-cos2\left(\dfrac{\pi}{4}-x\right)}{1+cos2\left(\dfrac{\pi}{4}-x\right)}\)
\(VP=\dfrac{1-cos\left(\dfrac{\pi}{2}-2x\right)}{1+cos\left(\dfrac{\pi}{2}-2x\right)}\)
\(VP=\dfrac{1-sin2x}{1+cos2x}=VT\) ( đpcm )
d) \(tanx-tany=\dfrac{sin\left(x-y\right)}{cosx.cosy}\)
\(VP=\dfrac{sin\left(x-y\right)}{cosx.cosy}=\dfrac{sinx.cosy-cosx.siny}{cosx.cosy}\)
\(VP=\dfrac{sinx.cosy}{cosx.cosy}-\dfrac{cosx.siny}{cosx.cosy}\)
\(VP=\dfrac{sinx}{cosx}-\dfrac{siny}{cosy}=tanx-tany=VT\) ( đpcm )
1/Chứng minh rằng :
a/ cot\(^2\)x \(-cos^2x=cot^2x.cos^2x\)
b/ \(\frac{cosx+sinx}{cosx-sinx}-\frac{cosx-sinx}{cosx+sinx}=2tan2x\)
c/ \(\frac{sin4x+cos2x}{1+sin2x-cos4x}=cot2x\)
2/ Rút gọn biểu thức
A=\(sin^3+sin^2xcosx+sinxcos^2x+cos^3x\)
B=\(tanx\left(\frac{1+cos^2x}{sinx}-sinx\right)\)
\(cot^2x-cos^2x=\frac{cos^2x}{sin^2x}-cos^2x=cos^2x\left(\frac{1}{sin^2x}-1\right)=\frac{cos^2x\left(1-sin^2x\right)}{sin^2x}\)
\(=cos^2x.\left(\frac{cos^2x}{sin^2x}\right)=cot^2x.cos^2x\)
\(\frac{cosx+sinx}{cosx-sinx}-\frac{cosx-sinx}{cosx+sinx}=\frac{\left(cosx+sinx\right)^2-\left(cosx-sinx\right)^2}{\left(cosx-sinx\right)\left(cosx+sinx\right)}\)
\(=\frac{cos^2x+sin^2x+2sinx.cosx-\left(cos^2x+sin^2x-2sinx.cosx\right)}{cos^2x-sin^2x}=\frac{4sinx.cosx}{cos2x}=\frac{2sin2x}{cos2x}=2tan2x\)
\(\frac{sin4x+cos2x}{1-cos4x+sin2x}=\frac{2sin2x.cos2x+cos2x}{1-\left(1-2sin^22x\right)+sin2x}=\frac{cos2x\left(2sin2x+1\right)}{sin2x\left(2sin2x+1\right)}=\frac{cos2x}{sin2x}=cot2x\)
\(A=sin^2x\left(sinx+cosx\right)+cos^2x\left(sinx+cosx\right)\)
\(=\left(sin^2x+cos^2x\right)\left(sinx+cosx\right)=sinx+cosx\)
\(B=\frac{sinx}{cosx}\left(\frac{1+cos^2x-sin^2x}{sinx}\right)=\frac{sinx}{cosx}\left(\frac{2cos^2x}{sinx}\right)=2cosx\)
1:\(\left(sin\dfrac{x}{2}+cos\dfrac{x}{2}\right)^2+\sqrt{3}cosx=2\)
2: \(cos^2x-\sqrt{3}sin2x=1+sin^2x\)
3: \(4\left(sin^4x+cos^4x\right)+\sqrt{3}sin4x=2\)
4:\(cos5x-2sin3xcos2x-sinx=0\)
giai pt
a) \(sin^6x+cos^6x+sin2x=1\)
b) \(1+sinx+cosx+sin2x+cos2x=0\)
c) \(sin^2x-3cos^2x=2\left(sinx+\sqrt{3}cosx\right)\)
d) \(sin^3x.cosx-sinx.cos^3x=\frac{\sqrt{2}}{8}\)
a/
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+sin2x-1=0\)
\(\Leftrightarrow1-3sin^2x.cos^2x+sin2x-1=0\)
\(\Leftrightarrow-\frac{3}{4}sin^22x+sin2x=0\)
\(\Leftrightarrow sin2x\left(1-\frac{3}{4}sin2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\sin2x=\frac{4}{3}>1\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow2x=k\pi\)
\(\Leftrightarrow x=\frac{k\pi}{2}\)
b/
\(\Leftrightarrow\left(1+sin2x\right)+sinx+cosx+cos^2x-sin^2x=0\)
\(\Leftrightarrow\left(sinx+cosx\right)^2+sinx+cosx+\left(sinx+cosx\right)\left(cosx-sinx\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(sinx+cosx+1+cosx-sinx\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\\2cosx+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow\left(sinx-\sqrt{3}cosx\right)\left(sinx+\sqrt{3}\right)cosx=2\left(sinx+\sqrt{3}cosx\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+\sqrt{3}cosx=0\\sinx-\sqrt{3}cosx=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx=0\\\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{3}\right)=0\\sin\left(x-\frac{\pi}{3}\right)=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=k\pi\\x-\frac{\pi}{3}=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{3}+k\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
chứng minh \(sin^3x+cos^3x=\frac{3\left(sinx+cosx\right)-\left(sinx+cos\right)^3}{2}\)
Lời giải:
\(3(\sin x+\cos x)-(\sin x+\cos x)^3=(\sin x+\cos x)[3-(\sin x+\cos x)^2]\)
\(=(\sin x+\cos x)[3-(\sin ^2x+\cos ^2x)-2\sin x\cos x]\)
\(=(\sin x+\cos x)(3-1-2\sin x\cos x)=2(\sin x+\cos x)(1-\sin x\cos x)=2(\sin x+\cos x)(\sin ^2x+\cos ^2x-\sin x\cos x)\)
\(=2(\sin ^3+\cos ^3x)\)
\(\Rightarrow \frac{3(\sin x+\cos x)-(\sin x+\cos x)^3}{2}=\sin ^3x+\cos ^3x\)(đpcm)