\(\left\{{}\begin{matrix}2X-Y=-3\\X+3Y=4\end{matrix}\right.\)
GIả hpt
giải hpt bằng phương pháp thế:
9) \(\left\{{}\begin{matrix}3x-2=y\\2x+3y=6\end{matrix}\right.\)
10) \(\left\{{}\begin{matrix}2x+3y=2\\4x-y-1=0\end{matrix}\right.\)
11) \(\left\{{}\begin{matrix}3x-2y=3\\2x-\dfrac{4}{3}y=1\end{matrix}\right.\)
12) \(\left\{{}\begin{matrix}5x+y=3\\2x+0,4y=1,2\end{matrix}\right.\)
giúp mk vs ạ mai mk học rồi
9: \(\left\{{}\begin{matrix}3x-2=y\\2x+3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=2\\2x+3y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4\\6x+9y=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11y=-14\\3x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{14}{11}\\x=\dfrac{y+2}{3}=\dfrac{\dfrac{14}{11}+2}{3}=\dfrac{12}{11}\end{matrix}\right.\)
\(9,\Leftrightarrow\left\{{}\begin{matrix}3x-2=y\\2x+3\left(3x-2\right)=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-2=y\\11x=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{12}{11}\\y=\dfrac{14}{11}\end{matrix}\right.\)
\(10,\Leftrightarrow\left\{{}\begin{matrix}2x=2-3y\\2\left(2-3y\right)-y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2-3y\\4-6y-y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{14}\\y=\dfrac{3}{7}\end{matrix}\right.\)
giải hpt sau
\(\left\{{}\begin{matrix}3x^2+6xy-x+3y=0\\4x-9y=6\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y^2-2x-2y-23=0\\x-3y-3=0\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}x^2+y^2-2x-2y-23=0\\x-3y-3=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2+y^2-2x-2y-23=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(3y+3\right)^2+y^2-2\left(3y+3\right)-2y-23=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}9y^2+18y+9+y^2-6y-6-2y-23=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}10y^2+10y-20=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y^2+y-2=0\\x=3y+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(y+2\right)\left(y-1\right)=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\in\left\{-2;1\right\}\\x=3y+3\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(-3;-2\right);\left(6;1\right)\right\}\)
a: \(\left\{{}\begin{matrix}3x^2+6xy-x+3y=0\\4x-9y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}9y=4x-6\\3x^2+6xy-x+3y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{9}x-\dfrac{2}{3}\\3x^2+6x\cdot\left(\dfrac{4}{9}x-\dfrac{2}{3}\right)-x+3\cdot\left(\dfrac{4}{9}x-\dfrac{2}{3}\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x^2+\dfrac{8}{3}x^2-4x-x+\dfrac{4}{3}x-2=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{17}{3}x^2-\dfrac{11}{3}x-2=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}17x^2-11x-6=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x-1\right)\left(17x+6\right)=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}17x+6=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=\dfrac{4}{9}\cdot1-\dfrac{2}{3}=\dfrac{4}{9}-\dfrac{2}{3}=-\dfrac{2}{9}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-\dfrac{6}{17}\\y=\dfrac{4}{9}\cdot\dfrac{-6}{17}-\dfrac{2}{3}=\dfrac{-14}{17}\end{matrix}\right.\end{matrix}\right.\)
10. giải hpt bằng phương pháp thế:
6) \(\left\{{}\begin{matrix}2y-4=0\\3x+y=-4\end{matrix}\right.\)
7) \(\left\{{}\begin{matrix}4x-6y=2\\x-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\)
8) \(\left\{{}\begin{matrix}\dfrac{x}{3}+\dfrac{y}{2}=1\\2x+3y=\dfrac{2}{5}\end{matrix}\right.\)
9) \(\left\{{}\begin{matrix}3x-2=y\\2x+3y=6\end{matrix}\right.\)
10) \(\left\{{}\begin{matrix}2x+3y=2\\4x-y-1=0\end{matrix}\right.\)
11) \(\left\{{}\begin{matrix}3x-2y=3\\2x-\dfrac{4}{3}y=1\end{matrix}\right.\)
12) \(\left\{{}\begin{matrix}5x+y=3\\2x+0,4y=1,2\end{matrix}\right.\)
giúp mk vs ạ mai mk học rồi
6. \(\left\{{}\begin{matrix}2y-4=0\\3x+y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}4x-6y=2\\x-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2+6y}{4}\\\dfrac{2+6y}{4}-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2+6y}{4}\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-2\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\dfrac{x}{3}+\dfrac{y}{2}=1\\2x+3y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\left(1-\dfrac{y}{2}\right).3\\6\left(1-\dfrac{y}{2}\right)+3y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\left(1-\dfrac{y}{2}\right)\\y=\left(VNghiệm\right)\end{matrix}\right.\Leftrightarrow\) không tồn tại x, y
(Các câu khác tương tự nhé.)
1. Cho hpt \(\left\{{}\begin{matrix}x+y=4\\2x+3y=m\end{matrix}\right.\)
Tìm m để hpt có nghiệm (x;y) thỏa \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\)
2. Cho hpt \(\left\{{}\begin{matrix}2x+y=3m+1\\3x+2y=2m-3\end{matrix}\right.\)
Với giá trị nào của m thì hpt có nghiệm (x;y) thỏa \(\left\{{}\begin{matrix}x< 1\\y< 6\end{matrix}\right.\)
1)
\(\left\{{}\begin{matrix}x+y=4\\2x+3y=m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x+3y=12\\2x+3y=m\end{matrix}\right.\)
trừ 2 vế của pt cho nhau ta tìm được
\(\left\{{}\begin{matrix}x=12-m\\y=m-8\end{matrix}\right.\)
để \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< 12\\m< 8\end{matrix}\right.\Rightarrow}m< 8}\)
1) cho hpt: \(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
tìm m để hpt có nghiệm (\(x_0,y_0\)) t/m: \(x_0^2+y_0^2=9m\)
2) cho hpt: \(\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\)
tìm m để hpt có nghiệm duy nhất \(\left(x_0,y_0\right)\) t/m: \(x_0^2-2x_0-y_0>0\)
giúp mk vs mk cần gấp
Bài 1.
\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)
\(x_0^2+y_0^2=9m\)
\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)
\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)
\(\Leftrightarrow2m^2-7m+5=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )
giải hpt:
\(\left\{{}\begin{matrix}\left(x-y\right)^2+3\left(x-y\right)=4\\2x+3y=12\end{matrix}\right.\)
Ta có : \(\left\{{}\begin{matrix}\left(x-y\right)^2+3\left(x-y\right)=4\\2x+3y=12\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\left(x-y\right)\left(x-y+3\right)=4\\2x+3y=12\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\left(2x-2y\right)\left(2x-2y+6\right)=16\\2x=12-3y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\left(12-3y-2y\right)\left(12-3y-2y+6\right)=16\\2x=12-3y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\left(12-5y\right)\left(18-5y\right)=16\\2x=12-3y\end{matrix}\right.\)
( đoạn này đặt cũng được mà không đặt cũng được nha , tui rảnh đặt cho zui :))
- Đặt 12 - 5y = t ta được hệ phương trình :\(\left\{{}\begin{matrix}t\left(6+t\right)=16\\2x=12-3y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}t^2+6t-16=0\\2x=12-3y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}t=2\\t=-8\end{matrix}\right.\\2x=12-3y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}-5y=-10\\-5y=-20\end{matrix}\right.\\2x=12-3y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}y=2\\y=4\end{matrix}\right.\\\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\end{matrix}\right.\)
Vậy phương trình có hai nghiệm (x;y) = ( 3;2 ) , ( 0;4 )
Ủa từ pt đầu đặt \(x-y=t\Rightarrow t^2+3t-4=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-4\end{matrix}\right.\) được luôn mà?
\(\Rightarrow\left[{}\begin{matrix}x-y=1\\x-y=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x-1\\y=x+4\end{matrix}\right.\)
Thay xuống dưới: \(\left[{}\begin{matrix}2x+3\left(x-1\right)=12\\2x+3\left(x+4\right)=12\end{matrix}\right.\)
Hpt tương đương với hpt\(\left\{{}\begin{matrix}2x-5y=5\\2x+3y=5\end{matrix}\right.\)là:
A,\(\left\{{}\begin{matrix}2x-5y=5\\4x+8y=10\end{matrix}\right.\) B,\(\left\{{}\begin{matrix}2x-5y=5\\0x-2y=0\end{matrix}\right.\) C,\(\left\{{}\begin{matrix}2x-5y=5\\2x-8y=10\end{matrix}\right.\) D,\(\left\{{}\begin{matrix}\frac{2}{5}x-y=1\\\frac{2}{3}x+y=\frac{5}{3}\end{matrix}\right.\)
Giải thích hộ mk nha
\(\Leftrightarrow\left\{{}\begin{matrix}-2x+5y=-5\\2x+3y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8y=0\\2x+3y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=0\end{matrix}\right.\)
giải hpt:
\(\left\{{}\begin{matrix}\left(2x+3y-2\right)\left(x-5y-3\right)=0\\x-3y=1\end{matrix}\right.\)
Lời giải:
Từ PT (2) suy ra $x=3y+1$
Từ PT (1) suy ra \(\left[{}\begin{matrix}2x+3y-2=0\\x-5y-3=0\end{matrix}\right.\)
Nếu $2x+3y-2=0$. Thay $x=3y+1$ vô thì:
$2(3y+1)+3y-2=0$
$\Leftrightarrow 9y=0\Leftrightarrow y=0$.
$x=3y+1=3.0+1=1$. HPT có nghiệm $(x,y)=(1,0)$
Nếu $x-5y-3=0$. Thay $x=3y+1$ vô thì:
$3y+1-5y-3=0$
$\Leftrightarrow -2y-2=0\Leftrightarrow y=-1$
$x=3(-1)+1=-2$. HPT có nghiệm $(x,y)=(-2; -1)$
Giải hpt:
1, \(\left\{{}\begin{matrix}x^2+y+x^3y+x^2y+xy=\frac{-5}{4}\\x^4+y^2+xy\left(1+2x\right)=\frac{-5}{4}\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^4+2x^2y+x^2y^2=-2x+9\\x^2+2xy=6x+6\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}x-\frac{1}{x}=y-\frac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
3) ta xét phương trình thứ nhất
\(x-\frac{1}{x}=y-\frac{1}{y}\)
<=>\(x-y-\frac{1}{x}+\frac{1}{y}=0\)
<=>\(x-y-\left(\frac{1}{x}-\frac{1}{y}\right)=0\)
<=>\(x-y-\left(\frac{y-x}{xy}\right)=0\)
<=>\(\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\)
<=>\(x=y\) hoặc xy=-1
Với x=y thay vào phương trình thứ hai ta có
\(2x=x^3+1
\)
<=> \(x^3-2x+1=0\)
<=>\(x^3-x^2+x^2-x-x+1=0\)
<=>\(\left(x-1\right)\left(x^2+x-1\right)=0\)
<=> \(x=1\) hoặc \(x^2+x-1=0\)
\(x^2+x-1=0\) <=> \(x=\frac{-1+\sqrt{5}}{2}\)
hoặc \(x=\frac{-1-\sqrt{5}}{2}\)
Đối với xy=-1 thì y=-1/x thay vào phương trình 2 giải bình thường