cho 2 đa thức A(x) = 2x3 - 3x2 - x + 1 ; B(x) = -2x3 + 3x2 + 5x - 2
a , tính C(x) = A(x) + B(x)
b , tìm nghiệm của đa thức C(x)
c , tìm đa thức D(x) sao cho B(x) + D(x) = A(x) , mik đang gấp , trc tiên cho mik cảm ơn trc nhá :333
Tìm a để đa thức 2x3-3x2+x+a chia hết cho đa thức x+2
\(2x^3-3x^2+x+a=\left(x+2\right)\left(2x^2-7x+15\right)+\left(a-30\right)=Q\left(x\right).\left(x+2\right)\)
=> x=-2 thì \(2.\left(-2\right)^2-3\left(-2\right)^2+\left(-2\right)+a=Q\left(x\right).0=0\)
<=> -16 -12 -2 +a =0
<=> a -30 =0
=> a= 30.
Tìm số a để đa thức 2x3 – 3x2 + x + a chia hết cho đa thức x + 2.
Thực hiện phép chia:
2x3 – 3x2 + x + a chia hết cho x + 2
⇔ số dư = a – 30 = 0
⇔ a = 30.
Cách 2: Phân tích 2x3 – 3x2 + x + a thành nhân tử có chứa x + 2.
2x3 – 3x2 + x + a
= 2x3 + 4x2 – 7x2 – 14x + 15x + 30 + a – 30
(Tách -3x2 = 4x2 – 7x2; x = -14x + 15x)
= 2x2(x + 2) – 7x(x + 2) + 15(x + 2) + a – 30
= (2x2 – 7x + 15)(x + 2) + a – 30
2x3 – 3x2 + x + a chia hết cho x + 2 ⇔ a – 30 = 0 ⇔ a = 30.
Tìm số a để đa thức 2x3-3x2+x+a chia hết cho đa thức x+2
Số dư của phép chia đa thức \(\text{f( x ) = 2x^3 - 3x^2 + x + a}\) cho \(\text{x + 2}\) là
\(\text{f ( -2 ) = 2(-2) ^3 - 3 (-2 )^2 + ( - 2 ) + a = -30 + a}\)
Để phép chia là chia hết thì số dư bằng \(\text{0}\)
Hay \(\text{-30 + a = 0}\) \(\Rightarrow\) \(\text{a = 30}\)
a,tìm giá trị của a để đa thức 3x2 + 7x + a +4 chia hết cho đa thức x - 5
b,tìm giá trị của b để đa thức 2x3 - 3x2 + x +b chia hết cho đa thức x + 2
Tìm số a để đa thức 2x3 – 3x2 + x + a chia hết cho đa thức x + 2.
Đa thức \(f\left(x\right)=2x^3-3x^2+x+a\) chia hết cho đa thức \(x+2\)
\(\Leftrightarrow\)\(f\left(-2\right)=0\)
\(\Leftrightarrow\)\(2.\left(-2\right)^3-3.\left(-2\right)^2+\left(-2\right)+a=0\)
\(\Leftrightarrow\)\(-30+a=0\)
\(\Leftrightarrow\)\(a=30\)
Vậy \(a=30\)thì \(2x^3-3x^2+x+a\)chia hết cho \(x+2\)
p/s: bn có thế lm theo cách truyền thống: đặt tính chia ra rồi đặt dư = 0 và tìm a
hoặc dùng hệ số bất định
2x^3-3x^2+x+a | x+2
------------------|-------------
2x^3-3x^2 | 2x^2-7x+15
2x^2+4x^2
-7x^2+x
-7x^2-14x
15x+a
15x+30
\(2x^3-3x^2+x+a\div x+2\)
Để đa thức \(2x^3+3x^2+x+a⋮x+2\)
\(\Rightarrow15x+a=15x+30\)
\(\Rightarrow a-30=0\Rightarrow a=30\)
Bài 5: Tìm a, b sao cho
a/ Đa thức x4 – x3 + 6x2 – x + a chia hết cho đa thức x2 – x + 5
b/ Đa thức 2x3 – 3x2 + x + a chia hết cho đa thức x + 2.
Đặt \(f\left(x\right)=2x^3-3x^2+x+a\)
Ta có: phép chia \(f\left(x\right)\) cho \(x+2\) có dư là \(R=f\left(-2\right)\)
\(\Rightarrow f\left(-2\right)=2.\left(-2\right)^3-3.\left(-2\right)^2+\left(-2\right)+a\)
\(f\left(-2\right)=2.\left(-8\right)-3.4-2+a\)
\(f\left(-2\right)=-16-12-2+a\)
\(f\left(-2\right)=-20+a\)
Để \(f\left(x\right)\) chia hết cho \(x+2\) thì \(R=0\) hay \(f\left(-2\right)=0\)
\(\Rightarrow-20+a=0\Leftrightarrow a=20\)
1. Tìm x
x2 - 16 - x(x - 4) = 0
2. Thực hiện phép tính
(x + 3)2 - (x - 3)(x + 5)
3. Tìm a để đa thức 2x3 + 3x2 - 2x + a chia hết cho đa thức x - 2
1) \(\Leftrightarrow\left(x-4\right)\left(x+4\right)-x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+4-x\right)=0\)
\(\Leftrightarrow\left(x-4\right)4=0\)
\(\Leftrightarrow x=4\)
2) \(\left(x+3\right)^2-\left(x-3\right)\left(x+5\right)=x^2+6x+9-x^2-2x+15=4x+24\)
3) \(2x^3+3x^2-2x+a=2x^2\left(x-2\right)+7x\left(x-2\right)+16\left(x-2\right)+32+a\)
Để \(2x^3+3x^2-2x+a⋮x-2\) thì \(32+a=0\Leftrightarrow a=-32\)
1.
x2 - 16 - x(x - 4) = 0
<=> (x2 - 42) - x(x - 4) = 0
<=> (x - 4)(x + 4) - x(x - 4) = 0
<=> (x + 4 - x)(x + 4) = 0
<=> 4(x + 4) = 0
<=> x + 4 = 0
<=> x = -4
2.
(x + 3)2 - (x - 3)(x + 5)
= x2 + 6x + 9 - (x2 + 5x - 3x - 15)
= x2 + 6x + 9 - x2 + 5x - 3x - 15
= x2 - x2 + 6x + 5x - 3x + 9 - 15
= 8x - 6
1.
x2−16+x(x−4)=0
(x2−16)+x(x−4)=0
(x+4)(x−4)+x(x−4)=0
(x−4)(x+4+x)=0
(x−4)(2x+4)=0
⇒x−4=0⇒x=4
⇒2x + 4=0 ⇒ 2x = -4 ⇒ x = - 2
Vậy x=−2 hoặc x=4.
3. Ta có : 2x3 + 3x2 - 2x + a = (x - 2)(2x2 + 7x + 12) + (a - 24)
Để phép chia trên là phép chia hết thì a - 24 = 0 => a = 24
Còn bài 2 mình khum biéc làm 😢😢😢
Cho hai đa thức: A(x)= 5x2+2x3+8-7x và B=(x)= 3x2-1-2x+4x3
a/ Sắp xếp 2 đa thức theo lũy thừa giảm của biến
b/ Tính A(-1)
c/Tính đa thức C(x) biết: A(x)=B(x)+C(x)
`a)`
`@A(x)=5x^2+2x^3+8-7x`
`=2x^3+5x^2-7x+8`
`@B(x)=3x^2-1-2x+4x^3`
`=4x^3+3x^2-2x-1`
_______________________________________
`b)A(-1)=2.(-1)^3+5.(-1)^2-7.(-1)+8`
`=2.(-1)+5.1+7+8`
`=-2+5+7+8=18`
____________________________________________
`c)A(x)=B(x)+C(x)`
`=>C(x)=A(x)-B(x)`
`=>C(x)=(2x^3+5x^2-7x+8)-(4x^3+3x^2-2x-1)`
`=>C(x)=2x^3+5x^2-7x+8-4x^3-3x^2+2x+1`
`=>C(x)=-2x^3+2x^2-5x+9`
a)\(A\left(x\right)=2x^3+5x^2-7x+8\)
\(B\left(x\right)=4x^2+3x^2-2x-1\)
b)\(A\left(-1\right)=2.\left(-1\right)^3+5.\left(-1\right)^2-7.\left(-1\right)+8\)
\(A\left(-1\right)=-2+5+7+8=18\)
c)\(A\left(x\right)=B\left(x\right)+C\left(x\right)\)
\(=>C\left(x\right)=A\left(x\right)-B\left(x\right)\)
\(C\left(x\right)=2x^3+5x^2-7x+8-4x^2-3x^2+2x+1\)
\(C\left(x\right)=-x^3+x^2-5x+9\)
$a/$
Sắp xếp theo lũy thừa giảm dần của biến
`A(x) = 5x^2 + 2x^3 + 8 - 7x = 2x^3 + 5x^2 - 7x+8`
`B(x) = 3x^2 - 1 - 2x + 4x^3 = 4x^3 + 3x^2 - 2x-1`
$b/$
`A(-1) = 2*(-1)^3 + 5*(-1)^2 - 7*(-1)+8=18`
$c/$
`A(x) = C(x) + B(x)`
`<=> A(x) -B(x) = C(x)`
`= ( 2x^3 + 5x^2 - 7x+8 )-(4x^3 + 3x^2 - 2x-1)`
`= ( 2x^3 - 4x^3 ) + ( 5x^2 - 3x^2 )+(2x-7x)+(8+1)`
`= 2x^2 - 2x^3 - 5x +9`
Tìm bậc của mỗi đa thức sau
a) f (x) = 3x2 + 2x3 - 6x - 2
b) g(x) = 5x2 + 9 - 2x3 - 3x2 - 4x + 2x3 - 2
f (x) = 3x2 + 2x3 - 6x - 2
bậc của đa thức là: 3
g(x) = 5x2 + 9 - 2x3 - 3x2 - 4x + 2x3 - 2
g(x) = ( 5x2 - 3x2 ) + ( 9 -2) + ( - 2x3 + 2x3 ) - 4x
g(x) = 2x2 + 7 - 4x
bậc của đa thức là : 2