với giá trị nào của m thì phương trình x^2-4x+m-3=0 có 2 nghiệm x1,x2 sao cho x1+x2+x1x2=7
Với giá trị nào của m thì phương trình: (m - 1) x 2 - 2(m - 2)x + m - 3 = 0 có hai nghiệm x1, x2 và x1 + x2 + x1x2 < 1?
A. 1 < m < 2
B. 1 < m < 3
C. m > 2
D. m > 2
Chọn B.
Ta có: Δ = (m - 2 ) 2 - (m - 1)(m - 3) = ( m 2 - 4m + 4 ) - ( m 2 - 4m + 3) = 1 > 0
Phương trình có hai nghiệm phân biệt x1, x2.
Áp dụng hệ thức Vi-ét ta có:
Ta có:
Cho phương trình 4x2-2(2m+3)x+m+1=0
a) với giá trị nào của m thì phương trình có một nghiệm bằng 0, tìm nghiệm còn lại
b) Trong trường hợp phương trình có 2 nghiệm x1 và x2, tìm tất cả các giá trị của m để (x1+x2) / (x1x2) < 4
MONG NHẬN ĐƯỢC SỰ GIÚP ĐỠ TỪ CÁC CAO NHÂN !!!
a) Thay x=0 vào phương trình, ta được:
\(4\cdot0^2-2\cdot\left(2m+3\right)\cdot0+m+1=0\)
\(\Leftrightarrow m+1=0\)
hay m=-1
Áp dụng hệ thức Vi-et, ta có:
\(x_1+x_2=\dfrac{2\left(2m+3\right)}{4}\)
\(\Leftrightarrow x_1=\dfrac{2\cdot\left(-2+3\right)}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)
Vậy: Khi m=-1 và nghiệm còn lại là \(x=\dfrac{1}{2}\)
Cho phương trình ẩn x: x2 – x + 1 + m = 0 (1)
a) Giải phương trình đã cho với m = 0.
b) Tìm các giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: x1x2.( x1x2 – 2 ) = 3( x1 + x2 ).
a, Thay m=0 vào pt ta có:
\(x^2-x+1=0\)
\(\Rightarrow\) pt vô nghiệm
b, Để pt có 2 nghiệm thì \(\Delta\ge0\)
\(\Leftrightarrow\left(-1\right)^2-4.1\left(m+1\right)\ge0\\ \Leftrightarrow1-4m-4\ge0\\ \Leftrightarrow-3-4m\ge0\\ \Leftrightarrow4m+3\le0\\ \Leftrightarrow m\le-\dfrac{3}{4}\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m+1\end{matrix}\right.\)
\(x_1x_2\left(x_1x_2-2\right)=3\left(x_1+x_2\right)\\ \Leftrightarrow\left(x_1x_2\right)^2-2x_1x_2=3.1\\ \Leftrightarrow\left(m+1\right)^2-2\left(m+1\right)-3=0\\ \Leftrightarrow\left[{}\begin{matrix}m+1=3\\m+1=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)
cho phương trình x² - 2(m+1)x +m² +4 = 0 . tìm m để phương trình có hai nghiệm x1 x2 sao cho C = x1 +x2 - x1x2 +3 đạt giá trị lớn nhất và tìm giá trị lớn nhất đó
Ptr có nghiệm `<=>\Delta' >= 0`
`<=>[-(m+1)]^2-(m^2+4) >= 0`
`<=>m^2+2m+1-m^2-4 >= 0`
`<=>m >= 3/2`
Với `m >= 3/2`, áp dụng Vi-ét có:`{(x_1+x_2=[-b]/a=2m+2),(x_1.x_2=c/a=m^2+4):}`
Ta có:`C=x_1+x_2-x_1.x_2+3`
`<=>C=2m+2-m^2-4+3`
`<=>C=-m^2+2m+1`
`<=>C=-(m^2-2m+1)+2`
`<=>C=-(m-1)^2+2`
Vì `-(m-1)^2 <= 0 AA m >= 3/2`
`<=>-(m-1)^2+2 <= 2 AA m >= 3/2`
Dấu "`=`" xảy ra`<=>(m-1)^2=0<=>m=1` (ko t/m)
Vậy không tồn tại `m` để `C` có `GTLN`
Cho phương trình x2 - x + m + 1 = 0 (m là tham số).Tìm các giá trị của m để phương trình có 2 nghiệm phân biệt x1 ,x2 sao cho: x12 + x1x2 + 3x2 = 7
\(\Delta=1-4\left(m+1\right)>0\Rightarrow m< -\dfrac{3}{4}\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m+1\end{matrix}\right.\)
\(x_1^2+x_1x_2+3x_2=7\)
\(\Leftrightarrow x_1\left(x_1+x_2\right)+3x_2=7\)
\(\Leftrightarrow x_1+3x_2=7\)
Kết hợp Viet ta được: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1+3x_2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-2\\x_2=3\end{matrix}\right.\)
Thế vào \(x_1x_2=m+1\)
\(\Rightarrow m+1=-6\Rightarrow m=-7\)
Cho phương trình x 2 - 2 m + 1 x + m 2 + 2 = 0 với m là tham số. Tìm m để phương trình có hai nghiệm x 1 ; x 2 sao cho A = x 1 x 2 − 2 ( x 1 + x 2 ) − 6 đạt giá trị nhỏ nhất
A. m =2
B. m = 1 2
C. m=1
D. m = 4 ± 10
Ta có A = x 1 x 2 − 2 ( x 1 + x 2 ) − 6
= m 2 + 2 - 2 2 m + 2 - 6 = m 2 - 4 m - 8
⇒ A = m - 2 2 - 12 ≥ 12
Suy ra m i n A = - 12 ⇔ m = 2
m = 2 thỏa mãn (*)
Vậy với m = 2 thì biểu thức A đạt giá trị nhỏ nhất.
Đáp án cần chọn là: A
Với giá trị nào của tham số m thì phương trình 4 x - m . 2 x + 1 + 2 m = 0 có 2 nghiệm x 1 , x 2 thỏa mãn x 1 + x 2 = 3 ?
A. m = 4
B. m = 3
C. m = 2
D. m = 1
Cho phương trình: \(^{x^2-4x+5m-2=0}\)( với m là tham số)
Tính giá trị của m để phương trình trên có ngiệm x1, x2 thỏa mãn x1^2x2+x1x2^2=12
( x một mũ hai nhân x hai +x1 nhân x2 mũ hai nha)
Tại mk lười dùng delta nên bn làm delta cũng tương tự vậy nha!
Ta có: x2 - 4x + 5m - 2 = 0
\(\Leftrightarrow\) x2 - 4x + 4 + 5m - 6 = 0
\(\Leftrightarrow\) (x - 2)2 = 6 - 5m
\(\Leftrightarrow\) x - 2 = \(\pm\)\(\sqrt{6-5m}\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x_1=\sqrt{6-5m}+2\\x_2=-\sqrt{6-5m}+2\end{matrix}\right.\)
Ta có: x12 . x2 + x1 . x22 = 12
\(\Leftrightarrow\) (\(\sqrt{6-5m}+2\))2. \(\left(-\sqrt{6-5m}+2\right)\) + \(\left(\sqrt{6-5m}+2\right)\) \(\left(-\sqrt{6-5m}+2\right)^2\) = 12
\(\Leftrightarrow\) (4 - 6 + 5m)(\(\sqrt{6-5m}+2-\sqrt{6-5m}+2\)) = 12
\(\Leftrightarrow\) (-2 + 5m).4 = 12
\(\Leftrightarrow\) -2 + 5m = 3
\(\Leftrightarrow\) m = 1
Vậy ...
Chúc bn học tốt!
Cho phương trình \(x^2-x+m+1=0\) ( m là tham số). Gọi x1,x2 là 2 nghiệm phân biệt của phương trình. Tìm các giá trị của m sao cho x12 + x1x2 = 7 - 3x2
\(\Delta'=1-4\left(m+1\right)=-4m-3>0\Rightarrow m< -\dfrac{3}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m+1\end{matrix}\right.\)
\(x_1^2+x_1x_2=7-3x_2\)
\(\Leftrightarrow x_1\left(x_1+x_2\right)=7-3x_2\)
\(\Leftrightarrow x_1=7-3x_2\)
\(\Leftrightarrow x_1+x_2=7-2x_2\)
\(\Leftrightarrow1=7-2x_2\Rightarrow x_2=3\Rightarrow x_1=1-x_2=-2\)
Thế vào \(x_1x_2=m+1\Rightarrow-6=m+1\Rightarrow m=-7\)