Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
FREESHIP Asistant
Xem chi tiết
Thanh Hoàng Thanh
10 tháng 3 2022 lúc 17:38

Đặt \(f\left(x\right)=\dfrac{x-1}{\left(x-2\right)\left(x-3\right)}.\)

 \(x-1=0.\Leftrightarrow x=1.\\ x-2=0.\Leftrightarrow x=2.\\ x-3=0.\Leftrightarrow x=3.\)

undefined

\(\Rightarrow f\left(x\right)>0\Leftrightarrow x\in\) \(\left(1;2\right)\cup\left(3;+\infty\right).\)

\(\Rightarrow B.\)

đỗ quốc duy
10 tháng 3 2022 lúc 19:57

b

 

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 8 2023 lúc 21:43

Chọn D

Buddy
Xem chi tiết
datcoder
14 tháng 8 2023 lúc 21:41

\(\log_{\dfrac{1}{4}}x>-2\\ \Rightarrow\left\{{}\begin{matrix}x>0\\\log_{\dfrac{1}{4}}x>\log_{\dfrac{1}{4}}16\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x>0\\x< 16\end{matrix}\right.\\ \Leftrightarrow0< x< 16\)

Chọn C.

Mao Tử
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 3 2022 lúc 13:54

Chọn B

băng
3 tháng 3 2022 lúc 13:54

B nhá bạn 

Mạnh=_=
3 tháng 3 2022 lúc 13:56

B

Buddy
Xem chi tiết
HT.Phong (9A5)
26 tháng 8 2023 lúc 13:46

\(0,5^{3x-1}>0,25\)

\(\Leftrightarrow0,5^{3x-1}>0,5^2\)

\(\Leftrightarrow3x-1< 2\)

\(\Leftrightarrow3x< 3\)

\(\Leftrightarrow x< \dfrac{3}{3}\)

\(\Leftrightarrow x< 1\)

Vậy: \(\left(-\infty;1\right)\)

Chọn A

Phan uyển nhi
Xem chi tiết
Ngô Thành Chung
30 tháng 4 2021 lúc 21:13

3x2 - 12x - |x - 2| > 12

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-12x-\left(x-2\right)>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-12x-\left(2-x\right)>12\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-12x-x+2>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-12x+x-2>12\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)

Vậy tập nghiệm là \(S=\left(-\infty;-1\right)\cup\left(5;+\infty\right)\)

Nguyễn Việt Lâm
5 tháng 5 2021 lúc 1:13

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3\left(x^2-4x\right)-\left(x-2\right)>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3\left(x^2-4x\right)-\left(2-x\right)>12\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-13x-10>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-11x-14>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=5\end{matrix}\right.\)

Rimuru Tempest
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 7 2021 lúc 14:49

- Với \(m=\dfrac{1}{2}\) ko thỏa mãn

- Với \(m\ne\dfrac{1}{2}\)

\(\Leftrightarrow\left(2m-1\right)x^3-\left(2m-1\right)x^2-\left(m-2\right)x^2+\left(m-4\right)x+2\ge0\)

\(\Leftrightarrow\left(2m-1\right)x^2\left(x-1\right)-\left(x-1\right)\left[\left(m-2\right)x+2\right]\ge0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(2m-1\right)x^2-\left(m-2\right)x-2\right]\ge0\) (1)

Do (1) luôn chứa 1 nghiệm \(x=1\in\left(0;+\infty\right)\) nên để bài toán thỏa mãn thì cần 2 điều sau đồng thời xảy ra:

+/ \(2m-1>0\Rightarrow m>\dfrac{1}{2}\)

+/ \(\left(2m-1\right)x^2-\left(m-2\right)x-2=0\) có 2 nghiệm trong đó \(x_1\le0\) và \(x_2=1\)

Thay \(x=1\) vào ta được:

\(\left(2m-1\right)-\left(m-2\right)-2=0\Leftrightarrow m=1\)

Khi đó: \(x^2+x-2=0\) có 2 nghiệm \(\left[{}\begin{matrix}x_1=-2< 0\left(thỏa\right)\\x_2=1\end{matrix}\right.\)

Vậy \(m=1\)

MARC LEVY BIN
Xem chi tiết
TV Cuber
18 tháng 5 2022 lúc 16:55

\(-\dfrac{1}{2}x+6< 0\Leftrightarrow-\dfrac{1}{2}x< -6\Leftrightarrow\cdot\dfrac{1}{2}x>6\Leftrightarrow x>12\)

(sai thì thoi nha)

Nguyễn Ngọc Huy Toàn
18 tháng 5 2022 lúc 16:56

\(-\dfrac{1}{2}x+6< 0\)

\(\Leftrightarrow-\dfrac{1}{2}x< -6\)

\(\Leftrightarrow x>\left(-6\right):\left(-\dfrac{1}{2}\right)\)

\(\Leftrightarrow x>12\)

--> Chọn A

𝓓𝓾𝔂 𝓐𝓷𝓱
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 2 2021 lúc 19:22

1.

\(\Leftrightarrow\left(m^2+4\right)x\ge2-m\)

Do \(m^2+4>0\) ; \(\forall m\)

\(\Rightarrow x\ge\dfrac{2-m}{m^2+4}\)

2.

\(\Leftrightarrow2mx-2x\ge m-1\Leftrightarrow2\left(m-1\right)x\ge m-1\)

- Với \(m>1\Rightarrow m-1>0\)

\(\Rightarrow x\ge\dfrac{m-1}{2\left(m-1\right)}\Leftrightarrow x\ge\dfrac{1}{2}\) \(\Rightarrow D=[\dfrac{1}{2};+\infty)\)

- Với \(m< 1\Rightarrow m-1< 0\Rightarrow x\le\dfrac{m-1}{2\left(m-1\right)}\Leftrightarrow x\le\dfrac{1}{2}\) \(\Rightarrow D=(-\infty;\dfrac{1}{2}]\)

- Với \(m=1\Leftrightarrow0\ge0\Rightarrow D=R\)

Quan sát 3 TH ta thấy không tồn tại m để tập nghiệm của BPT là \([1;+\infty)\)

DuaHaupro1
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 3 2022 lúc 11:43

Tập nghiệm của BPT là: \(\left[{}\begin{matrix}-3< x\le-1\\0\le x< 1\\x>1\end{matrix}\right.\)