B1: So sánh
a, 1240 và 2160
b, 5300 và 3453
c, 2450 và 3640
b1:So Sánh
a)53 và 35 b) (273) và 2712 c) 324 và 277
b2 tìm số tự nhiên x, biết
a)x3=216
b)3x + 15=18
`1a)5^3` và `3^5`
`5^3=125`
`3^5=243`
Vì `243>125` nên `3^5>5^3`
__
`c)3^24` và `27^7`
`27^7=(3^3)^7=3^21`
Vì `3^24>3^31` nên `3^24>27^7`
`2a)x^3=216`
`=>x^3=6^3`
`=>x=6`
__
`b)3^x+15=18`
`=>3^x=18-15`
`=>3^x=3`
`=>x=1`
B1: So sánh
a.\(\dfrac{-1}{20}\) và \(\dfrac{5}{7}\)
b. \(\dfrac{216}{217}\) và \(\dfrac{1164}{1163}\)
c. \(\dfrac{-12}{17}\) và \(\dfrac{-14}{15}\)
d. \(\dfrac{27}{29}\) và \(\dfrac{-2727}{2929}\)
e. \(\dfrac{3}{-4}\) và \(\dfrac{1}{2}\)
f. \(\dfrac{125}{-126}\) và \(\dfrac{1440}{1439}\)
g. \(\dfrac{-22}{66}\) và \(\dfrac{25}{-76}\)
h. \(\dfrac{-15}{91}\) và \(\dfrac{-23}{138}\)
_Gấp ạ:<<_
a) \(\dfrac{-1}{20}=\dfrac{-7}{140}\)
\(\dfrac{5}{7}=\dfrac{100}{140}\)
mà -7<100
nên \(-\dfrac{1}{20}< \dfrac{5}{7}\)
b) \(\dfrac{216}{217}< 1\)
\(1< \dfrac{1164}{1163}\)
nên \(\dfrac{216}{217}< \dfrac{1164}{1163}\)
c) \(\dfrac{-12}{17}=\dfrac{-180}{255}\)
\(\dfrac{-14}{15}=\dfrac{-238}{255}\)
mà -180>-238
nên \(-\dfrac{12}{17}>\dfrac{-14}{15}\)
d) \(\dfrac{27}{29}>0\)
\(0>-\dfrac{2727}{2929}\)
nên \(\dfrac{27}{29}>-\dfrac{2727}{2929}\)
so sánh
a,1619 và 825
b,5100 và 3500
\(a,16^{19}=\left(2^4\right)^{19}=2^{76}\\ 8^{25}=\left(2^3\right)^{25}=2^{75}\)
Vì \(2^{76}>2^{75}=>16^{19}>8^{25}\)
b,\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
Vì \(243^{100}>5^{100}=>3^{500}>5^{100}\)
a: 16^19=(2^4)^19=2^76
8^25=(2^3)^25=2^75
mà 76>75
nên 16^19>8^25
b: 3^500=(3^5)^100=243^100>5^100
so sánh
a)3200 và 2300
b)540
và 350\(a) 3^{200}=(3^2)^{100}=9^{100}\\2^{300}=(2^3)^{100}=8^{100}\)
Vì \(9^{100}>8^{100}\) nên \(3^{200}>2^{300}\)
\(b) 5^{40}=(5^4)^{10}=625^{10}\\3^{50}=(3^5)^{10}=243^{10}\)
Vì \(625^{10}>243^{10}\) nên \(5^{40}>3^{50}\)
#\(Toru\)
a> \(3^{200}\) và \(2^{300}\)
Ta có:\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
Vì 9>8 nên \(9^{100}>8^{100}\)
\(\Rightarrow\)\(3^{200}>2^{300}\)
b> \(5^{40}\) và \(3^{50}\)
Ta có:\(5^{40}=5^{4.10}=\left(5^4\right)^{10}=625^{10}\)
\(3^{50}=3^{5.10}=\left(3^5\right)^{10}=243^{10}\)
Vì 625 > 243 nên \(625^{10}>243^{10}\)
\(\Rightarrow\)\(5^{40}>3^{50}\)
`3^200=(3^2)^100=9^100`.
`2^300=(2^3)^100=8^100`.
`=> 2^300 < 3^200`.
`b, 5^40=(5^4)^10=625^10.`
`3^50=(3^5)^10=243^10`.
`=> 5^40 > 3^50`.
So sánh
a.548 và 2105 b.3310 và 250 c. 513100 và 1023 ngũ 90
a) \(5^{48}=\left(5^4\right)^{12}=625^{12}\)
\(2^{108}=\left(2^9\right)^{12}=512^{12}\)
Do \(625>512\Rightarrow625^{12}>512^{12}\) \(\Rightarrow5^{48}>2^{108}\) (1)
Lại có: \(108>105\Rightarrow2^{108}>2^{105}\) (2)
Từ (1) và (2) \(\Rightarrow5^{48}>2^{105}\)
b) \(2^{50}=\left(2^5\right)^{10}=32^{10}\)
Do \(33>32\Rightarrow33^{10}>32^{10}\)
Vậy \(33^{10}>2^{50}\)
c) Do \(513>512\Rightarrow513^{100}>512^{100}\) (1)
\(512^{100}=\left(2^9\right)^{100}=2^{900}\) \(=2^{10.90}=\left(2^{10}\right)^{90}=1024^{90}\) (2)
Do \(1024>1023\Rightarrow1024^{90}>1023^{90}\) (3)
Từ (1), (2) và (3) \(\Rightarrow513^{100}>1023^{90}\)
So sánh
a) 99^20 và 9999^10
b) 3^500 và 5^300
a: 99^20=9801^10<9999^10
b: 3^500=243^100
5^300=125^300
=>3^500>5^300
so sánh
a) 2 và \(\sqrt{3}\)
b) 6 và \(\sqrt{41}\)
c) 7 và \(\sqrt{47}\)
a) \(2=\sqrt{4}>\sqrt{3}\)
b) \(6=\sqrt{36}< \sqrt{41}\)
c) \(7=\sqrt{49}>\sqrt{47}\)
Bài 6: So sánh
a) 0,(26) và 0,261 b) 0,15 và 0,14(9)
a: 0,(26)<0,261
b: 0,15>0,14(9)
Cho m<n, hãy so sánh
a) 2022m và 2022n
b) -4m và -4n
a: m<n
=>2022m<2022n
b: m<n
=>-4m>-4n
a, do m<n
=> 2022m<2022n
b,do m<n
=> -4m<-4n
So sánh
a, 6+\(2\sqrt{2}\) và 9
b, \(\sqrt{11}-\sqrt{3}\) và 2
\(a,2\sqrt{2}=\sqrt{8}< \sqrt{9}=3\\ \Leftrightarrow6+2\sqrt{2}< 3+6=9\\ b,\left(\sqrt{11}-\sqrt{3}\right)^2=14-2\sqrt{33}\\ 2^2=4=14-10\\ \left(2\sqrt{33}\right)^2=132>100=10^2\Leftrightarrow-2\sqrt{33}< -10\\ \Leftrightarrow\sqrt{11}-\sqrt{3}< 2\)
a: \(2\sqrt{2}< 3\)
nên \(6+2\sqrt{2}< 9\)