Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ma Tiến Khôi

Những câu hỏi liên quan
Ma Tiến Khôi
Xem chi tiết
2611
30 tháng 4 2022 lúc 14:37

`a) 4x - 6 > 0`

`<=> 4x > 6`

`<=> x > 3 / 2`

Vậy `S = { x | x > 3 / 2 }`

___________________________

`b) 5 + 5x > 0`

`<=> 5x > -5`

`<=> x > -1`

Vậy `S = { x | x > -1 }`

Kinomoto Sakura
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 10 2021 lúc 14:16

\(a,x\left(x+9\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\\ b,\Rightarrow x\left(x^2+4x+4\right)=0\\ \Rightarrow x\left(x+2\right)^2=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ c,\Rightarrow\left(x-5-4\right)\left(x-5+4\right)=0\\ \Rightarrow\left(x-9\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\\ d,\Rightarrow3\left(x+2\right)-x\left(x+2\right)=0\\ \Rightarrow\left(x+2\right)\left(3-x\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\\ e,\Rightarrow x^3+6x^2+12x+8-x^3-6x^2=4\\ \Rightarrow12x=-4\Rightarrow x=-\dfrac{1}{3}\\ g,\Rightarrow\left(x+2\right)\left(x+3\right)=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)

vân nguyễn
Xem chi tiết
Kenny
30 tháng 6 2021 lúc 8:52

a) 3x(4x-3)-2x(5-6x)=0

\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)

\(\Leftrightarrow24x^2-19x=0\)

\(\Leftrightarrow x\left(24x-19\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)

Vậy x=0 hoặc x=\(\dfrac{19}{24}\)

Kenny
30 tháng 6 2021 lúc 8:58

b) 5(2x-3)+4x(x-2)+2x(3-2x)=0

\(\Leftrightarrow\)10x-15+4x2-8x+6x-4x2=0

\(\Leftrightarrow8x-15=0\)

\(\Leftrightarrow8x=15\)

\(\Leftrightarrow x=\dfrac{15}{8}\)

vậy x=\(\dfrac{15}{8}\)

Kenny
30 tháng 6 2021 lúc 9:12

c)3x(2-x)+2x(x-1)=5x(x+3)

\(\Leftrightarrow6x-3x^2+2x^2-2x=5x^2+15x\\ \Leftrightarrow4x-x^2=5x^2+15x\\ \Leftrightarrow4x-x^2-5x^2-15x=0\\ \)

\(\Leftrightarrow-6x^2-11x=0\\ \Leftrightarrow-x\left(6x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\6x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\6x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-11}{6}\end{matrix}\right.\)

Vậy x=0 hoặc x=\(\dfrac{-11}{6}\)

nood
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 2 2023 lúc 22:16

a: =>(5x+3)(x-1)=0

=>x=1 hoặc x=-3/5

b: =>(x-3)(4x-1-5x-2)=0

=>(x-3)(-x-3)=0

=>x=-3 hoặc x=3

c: =>(x+6)(3x-1+x-6)=0

=>(x+6)(4x-7)=0

=>x=7/4 hoặc x=-6

Names
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 3 2023 lúc 21:40

a.

\(x^2-x-\left(5x-5\right)=0\)

\(\Leftrightarrow x\left(x-1\right)-5\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

Câu b hoàn toàn tương tự

nghathanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 2 2022 lúc 23:40

a: \(\Leftrightarrow x^2\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\cdot\left(x-1\right)=0\)

=>x=-1 hoặc x=1

b: \(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

hay \(x\in\left\{-1;2;-2\right\}\)

c: \(x^3+x^2+4=0\)

\(\Leftrightarrow x^3+2x^2-x^2-2x+2x+4=0\)

\(\Leftrightarrow\left(x+2\right)\cdot\left(x^2-x+2\right)=0\)

=>x+2=0

hay x=-2

e: \(\Leftrightarrow x^4-2x^3-3x^3+6x^2-x^2+2x+3x-6=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-3x^2-x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)\left(x+1\right)\left(x-1\right)=0\)

hay \(x\in\left\{2;3;-1;1\right\}\)

ThanhNghiem
Xem chi tiết
Minh Hiếu
15 tháng 9 2023 lúc 20:00

\(a.x^2-4x+4=0\)

\(\left(x-2\right)^2=0\)

=>x=2

b) \(2x^2-x=0\)

\(x\left(2x-1\right)=0\)

=> \(\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)

c) \(x^2-5x+6=0\)

\(x^2-2x-3x+6=0\)

\(\left(x-2\right)\left(x-3\right)=0\)

=> \(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

d) \(x^2+y^2=0\)

Vì \(x^2,y^2\ge0\forall x,y\)

=>x=y=0

e) \(x^2+6x+10=0\)

\(\left(x+3\right)^2+1=0\)

Vì \(\left(x+3\right)^2\ge0\forall x\)

=> VT>0 \(\forall x\)

=> phương trình vô nghiệm

Nguyễn Lê Phước Thịnh
15 tháng 9 2023 lúc 19:59

loading...  

Nguyễn Đức Trí
15 tháng 9 2023 lúc 20:04

a) \(x^2-4x+4=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

b) \(2x^2-x=0\)

\(\Leftrightarrow x\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)

c) \(x^2-5x+6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\) \(\left(a+b+c=0\right)\)

d) \(x^2+y^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

e) \(x^2+6x+10=0\)

\(\Leftrightarrow x^2+6x+9+1=0\)

\(\Leftrightarrow\left(x+3\right)^2+1=0\left(1\right)\)

mà \(\left(x+3\right)^2+1\ge1>0,\forall x\in R\)

Nên phương trình (1) vô nghiệm

miner ro
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 11 2021 lúc 9:47

\(a,\Rightarrow\left(2x-5\right)^2+2\left(2x-5\right)\left(x+2\right)+\left(x+2\right)^2=0\\ \Rightarrow\left(2x-5+x+2\right)^2=0\\ \Rightarrow3x-3=0\\ \Rightarrow x=1\\ b,\Rightarrow9-\left(x^2-5x\right)^2=9\\ \Rightarrow x^2-5x=0\\ \Rightarrow x\left(x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

see tình boi
Xem chi tiết
YangSu
12 tháng 1 2023 lúc 19:26

\(a,\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

\(b,\left(x-2\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)

\(c,\left(x+3\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

\(d,\left(x+\dfrac{1}{2}\right)\left(4x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\4x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\4\left(x+1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-1\end{matrix}\right.\)

\(e,\left(x-4\right)\left(5x-10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\5x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

\(f,\left(2x-1\right)\left(3x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-2\end{matrix}\right.\)

⭐Hannie⭐
12 tháng 1 2023 lúc 19:27

`a,(x-1)(x+2)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

`b,(x -2)(x -5)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)

`c,(x +3)(x -5)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

`d,(x + 1/2)(4x + 4)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\4x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\4x=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-1\end{matrix}\right.\)

`e,(x -4)(5x -10)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\5x-10=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\5x=10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

`f,(2x -1)(3x +6)=0`

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\3x=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-2\end{matrix}\right.\)

`g,(2,3x -6,9)(0,1x -2)=0`

\(\Leftrightarrow\left[{}\begin{matrix}2,3x-6,9=0\\0,1x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2,3x=6,9\\0,1x=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=20\end{matrix}\right.\)

Ngô Hải Nam
12 tháng 1 2023 lúc 19:28

a.(x - 1)(x + 2)= 0

<=> x-1=0 hoặc x+2=0

<=> x=1 hoặc x=-2

b.(x -2)(x -5)=0

<=> x-2=0 hoặc x-5=0

<=> x=2 hoặc x=5

c.(x +3)(x -5)=0

<=> x+3=0 hoặc x-5=0

<=> x=-3 hoặc x=5

d.(x + 1/2)(4x + 4)=0

<=> x+1/2=0 hoặc 4x+4=0

<=> x=-1/2 hoặc x=-1

e.(x -4)(5x -10)=0

<=> x-4=0 hoặc 5x-10=0

<=> x=4 hoặc x=2

f.(2x -1)(3x +6)=0

<=> 2x-1=0 hoặc 3x+6=0

<=> x=1/2 hoặc x=-2

g.(2,3x -6,9)(0,1x -2)=0

<=> 2,3x-6,9=0 hoặc 0,1x-2=0

<=> x=3 hoặc x=20

Loan Tran
Xem chi tiết
Toru
22 tháng 12 2023 lúc 19:45

a) \(3\left(x-1\right)^2\cdot3x\left(x-5\right)=0\)

\(\Rightarrow9x\left(x-1\right)^2\left(x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=5\end{matrix}\right.\)

b) \(\left(x+3\right)^2-5x-15=0\)

\(\Rightarrow\left(x+3\right)^2-5\left(x+3\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x+3-5\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

c) \(2x^5-4x^3+2x=0\)

\(\Rightarrow2x\left(x^4-2x^2+1\right)=0\)

\(\Rightarrow2x\left[\left(x^2\right)^2-2\cdot x^2\cdot1+1^2\right]=0\)

\(\Rightarrow2x\left(x^2-1\right)^2=0\)

\(\Rightarrow2x\left(x-1\right)^2\left(x+1\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

\(\text{#}Toru\)