so sánh
a) 1512 và 81*1255
b) 7812-7811 và 7811-7810
So sánh
a) 354 và 2200
b) 1512 và 13 . 1253
c) 7812 - 7811 và 7811 - 7810
d) 7245 - 7244 và 2744
e) 339 và 1111
Giúp với!
a) \(3^{54}\)
\(2^{200}=4^{100}>3^{54}\)
\(\Rightarrow3^{54}< 2^{200}\)
b) \(15^{12}=3^{12}.5^{12}\)
\(1^3.125^3=\left(5^3\right)^3=5^9< 3^{12}.5^{12}\)
\(\Rightarrow15^{12}>1^3.125^3\)
c) \(78^{12}-78^{11}=78^{11}.\left(7-1\right)=78^{11}.6\)
\(78^{11}-78^{10}=78^{10}.\left(7-6\right)=78^{10}.6< 78^{11}.6\)
\(\Rightarrow78^{12}-78^{11}>78^{11}-78^{10}\)
d) \(72^{45}-72^{44}=72^{44}.\left(72-1\right)=72^{44}.72>27^{44}\)
\(\Rightarrow72^{45}-72^{44}>27^{44}\)
e) \(3^{39}=\left(3^3\right)^{13}=27^{13}>11^{11}\)
\(\Rightarrow3^{39}>11^{11}\)
bạn có thể giải thích rõ ra đc không?
Cho A = 77..........7811...........1 ( có 2013 chữ số 7 , 2013 chữ số 1 )
Chứng tỏ A là hợp số
Câu 4: Tính và so sánh
a. căn bậc 81 phần căn bậc 16 và 81 16
b.căn bậc 16+ 25 và căn bậc 16 + căn bậc 25
a: \(\dfrac{\sqrt{81}}{\sqrt{16}}=\dfrac{9}{4}=\dfrac{36}{16}< \dfrac{81}{16}\)
b: \(\sqrt{16+25}=\sqrt{41}< 9=\sqrt{16}+\sqrt{25}\)
so sánh
a,1619 và 825
b,5100 và 3500
\(a,16^{19}=\left(2^4\right)^{19}=2^{76}\\ 8^{25}=\left(2^3\right)^{25}=2^{75}\)
Vì \(2^{76}>2^{75}=>16^{19}>8^{25}\)
b,\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
Vì \(243^{100}>5^{100}=>3^{500}>5^{100}\)
a: 16^19=(2^4)^19=2^76
8^25=(2^3)^25=2^75
mà 76>75
nên 16^19>8^25
b: 3^500=(3^5)^100=243^100>5^100
so sánh
a)3200 và 2300
b)540
và 350\(a) 3^{200}=(3^2)^{100}=9^{100}\\2^{300}=(2^3)^{100}=8^{100}\)
Vì \(9^{100}>8^{100}\) nên \(3^{200}>2^{300}\)
\(b) 5^{40}=(5^4)^{10}=625^{10}\\3^{50}=(3^5)^{10}=243^{10}\)
Vì \(625^{10}>243^{10}\) nên \(5^{40}>3^{50}\)
#\(Toru\)
a> \(3^{200}\) và \(2^{300}\)
Ta có:\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
Vì 9>8 nên \(9^{100}>8^{100}\)
\(\Rightarrow\)\(3^{200}>2^{300}\)
b> \(5^{40}\) và \(3^{50}\)
Ta có:\(5^{40}=5^{4.10}=\left(5^4\right)^{10}=625^{10}\)
\(3^{50}=3^{5.10}=\left(3^5\right)^{10}=243^{10}\)
Vì 625 > 243 nên \(625^{10}>243^{10}\)
\(\Rightarrow\)\(5^{40}>3^{50}\)
`3^200=(3^2)^100=9^100`.
`2^300=(2^3)^100=8^100`.
`=> 2^300 < 3^200`.
`b, 5^40=(5^4)^10=625^10.`
`3^50=(3^5)^10=243^10`.
`=> 5^40 > 3^50`.
So sánh 1512 và 813.1253
So sánh
a) 99^20 và 9999^10
b) 3^500 và 5^300
a: 99^20=9801^10<9999^10
b: 3^500=243^100
5^300=125^300
=>3^500>5^300
So sánh
a.548 và 2105 b.3310 và 250 c. 513100 và 1023 ngũ 90
a) \(5^{48}=\left(5^4\right)^{12}=625^{12}\)
\(2^{108}=\left(2^9\right)^{12}=512^{12}\)
Do \(625>512\Rightarrow625^{12}>512^{12}\) \(\Rightarrow5^{48}>2^{108}\) (1)
Lại có: \(108>105\Rightarrow2^{108}>2^{105}\) (2)
Từ (1) và (2) \(\Rightarrow5^{48}>2^{105}\)
b) \(2^{50}=\left(2^5\right)^{10}=32^{10}\)
Do \(33>32\Rightarrow33^{10}>32^{10}\)
Vậy \(33^{10}>2^{50}\)
c) Do \(513>512\Rightarrow513^{100}>512^{100}\) (1)
\(512^{100}=\left(2^9\right)^{100}=2^{900}\) \(=2^{10.90}=\left(2^{10}\right)^{90}=1024^{90}\) (2)
Do \(1024>1023\Rightarrow1024^{90}>1023^{90}\) (3)
Từ (1), (2) và (3) \(\Rightarrow513^{100}>1023^{90}\)
Bài 6: So sánh
a) 0,(26) và 0,261 b) 0,15 và 0,14(9)
a: 0,(26)<0,261
b: 0,15>0,14(9)
Cho m<n, hãy so sánh
a) 2022m và 2022n
b) -4m và -4n
a: m<n
=>2022m<2022n
b: m<n
=>-4m>-4n
a, do m<n
=> 2022m<2022n
b,do m<n
=> -4m<-4n