Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Hoàng Đạt
Xem chi tiết
Hoàng Anh Thắng
Xem chi tiết
Corona
13 tháng 3 2022 lúc 23:46
Đào Tùng Dương
13 tháng 3 2022 lúc 23:47

undefined

Edowa Conan
Xem chi tiết
Lê Hồng Anh
Xem chi tiết
Tử Nguyệt Hàn
25 tháng 8 2021 lúc 17:08

a)√x−1=2(x≥1)
\(x-1=4 \)
x=5
b)
\(\sqrt{3-x}=4\)
 (x≤3)
\(\left(\sqrt{3-x}\right)^2=4^2\)
x-3=16
x=19





 

Nguyễn Lê Phước Thịnh
26 tháng 8 2021 lúc 0:00

a: Ta có: \(\sqrt{x-1}=2\)

\(\Leftrightarrow x-1=4\)

hay x=5

b: Ta có: \(\sqrt{3-x}=4\)

\(\Leftrightarrow3-x=16\)

hay x=-13

c: Ta có: \(2\cdot\sqrt{3-2x}=\dfrac{1}{2}\)

\(\Leftrightarrow\sqrt{3-2x}=\dfrac{1}{4}\)

\(\Leftrightarrow-2x+3=\dfrac{1}{16}\)

\(\Leftrightarrow-2x=-\dfrac{47}{16}\)

hay \(x=\dfrac{47}{32}\)

d: Ta có: \(4-\sqrt{x-1}=\dfrac{1}{2}\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{7}{2}\)

\(\Leftrightarrow x-1=\dfrac{49}{4}\)

hay \(x=\dfrac{53}{4}\)

e: Ta có: \(\sqrt{x-1}-3=1\)

\(\Leftrightarrow\sqrt{x-1}=4\)

\(\Leftrightarrow x-1=16\)

hay x=17

f:Ta có: \(\dfrac{1}{2}-2\cdot\sqrt{x+2}=\dfrac{1}{4}\)

\(\Leftrightarrow2\cdot\sqrt{x+2}=\dfrac{1}{4}\)

\(\Leftrightarrow\sqrt{x+2}=\dfrac{1}{8}\)

\(\Leftrightarrow x+2=\dfrac{1}{64}\)

hay \(x=-\dfrac{127}{64}\)

Lê Thị Diệu Hiền
Xem chi tiết
nguyễn thị bình minh
11 tháng 11 2017 lúc 14:05

b.

B= \(\dfrac{\sqrt{x-1}.1}{x}\)

AD BĐT cô si cho 2 số không âm x-1 và 1 ta được

B\(\le\dfrac{\dfrac{x-1+1}{2}}{x}\)=\(\dfrac{\dfrac{x}{2}}{x}\)=\(\dfrac{1}{2}\)( cô si đảo)

vậy MAX B =\(\dfrac{1}{2}\) dáu = xảy ra <=>

x-1=1=>x=2

Đạt Trần Tiến
12 tháng 11 2017 lúc 20:54

Áp dụng BĐT AM-GM ta có:

\(x\sqrt{3-x^2} \le\frac{x^2+3-x^2}{2}=\frac{3}{2} \)

Dấu "=" xảy ra <=>\(x=\sqrt{3-x^2} \)

<=>x=+-\(\sqrt{\frac{3}{2} } \)

:vvv
Xem chi tiết
:vvv
23 tháng 6 2021 lúc 16:13

À ý em lộn)):

Nguyễn Việt Lâm
23 tháng 6 2021 lúc 19:59

\(\dfrac{a^3}{b\left(c+2\right)}+\dfrac{b}{3}+\dfrac{c+2}{9}\ge3\sqrt[3]{\dfrac{a^3b\left(b+2\right)}{27b\left(c+2\right)}}=a\)

Tương tự: \(\dfrac{b^3}{c\left(a+2\right)}+\dfrac{c}{3}+\dfrac{a+2}{9}\ge b\)

\(\dfrac{c^3}{a\left(b+2\right)}+\dfrac{a}{3}+\dfrac{b+2}{9}\ge c\)

Cộng vế:

\(VT+\dfrac{4\left(a+b+c\right)}{9}+\dfrac{2}{3}\ge a+b+c\)

\(\Rightarrow VT\ge\dfrac{5\left(a+b+c\right)}{9}-\dfrac{2}{3}\ge\dfrac{15}{9}-\dfrac{2}{3}=1\)

ILoveMath
Xem chi tiết
Eren
19 tháng 1 2022 lúc 22:43

Bài 1: 

a) Áp dụng bđt Cô - si:

\(\dfrac{a}{b^2}+\dfrac{1}{a}\ge\dfrac{2}{b}\)

Tương tự với 2 phân thức còn lại của vế trái rồi cộng lại, ta có:

\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)

=> đpcm

Bài dù a + b + c = 2021 hay 1 số bất kì thì bđt luôn \(\ge\dfrac{3}{2}\). Bạn có thể tham khảo bđt Nesbitt

Minh Hiếu
19 tháng 1 2022 lúc 22:54

Bài 2:

\(P=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(=\dfrac{2021-\left(b+c\right)}{b+c}+\dfrac{2021-\left(c+a\right)}{c+a}+\dfrac{2021-\left(a+b\right)}{a+b}\)

\(=2021\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)-3\)

Áp dụng BĐT Svacxo, ta có

\(P\) ≥ \(\dfrac{9}{2}-3=\dfrac{3}{2}\)

Dấu"=" ⇔ ...

Lê Phương Mai
19 tháng 1 2022 lúc 23:06

Sau khi đã đi tham khảo 7749 người thì đã cho ra một kết quả:v

Bài 2. \(P=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(P=\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1+\dfrac{c}{a+b}+1-3\)

\(P=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)

\(P=\dfrac{(2a+2b+3c)( \dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b})}{2}-3 ≥ \dfrac{9}{2}-3=\dfrac{3}{2}\)

Dấu `"="` xảy ra:

\(\Leftrightarrow \begin{cases} a=b=c\\ a+b+c=2021 \end{cases} \)

\(\Leftrightarrow a=b=c=\dfrac{2021}{3}\)

Vậy \(min \) \(P=\dfrac{3}{2}\) khi \(a=b=c=\dfrac{2021}{3}\)

A Lan
Xem chi tiết
Đỗ Linh Chi
Xem chi tiết