so sánh
\(A=\dfrac{25^{16}+1}{25^{17}+!}\) và \(B=\dfrac{25^{15}+1}{25^{16}+1}\)
cho \(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\) và \(2x^3-1=15\) tính \(B=x+y+z\)
Ta có: \(2x^3-1=15\Leftrightarrow x^3=8\Rightarrow x=2\)
\(\Rightarrow\dfrac{18}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\Rightarrow\left\{{}\begin{matrix}\dfrac{y-25}{16}=2\Rightarrow y=57\\\dfrac{z+9}{25}=2\Rightarrow z=41\end{matrix}\right.\)
Vậy \(B=x+y+z=2+57+41=100\)
`2x^3-1=15=>2x^3=16=>x^3=8=>x=2`
Có:`[x+16]/9=[y-25]/16`
`=>[2+16]/9=[y-25]/16=>y=57`
Có:`[x+16]/9=[z+9]/25`
`=>[2+16]/9=[z+9]/25=>z=41`
Ta có:`B=x+y+z=2+57+41=100`
1, A= \(\dfrac{-3}{4}.\left(0,125-1\dfrac{1}{2}\right):\dfrac{33}{16}-25\%\)
2, B= \(1\dfrac{13}{15}.0,75-\left(\dfrac{11}{20}+25\%\right):\dfrac{7}{3}\)
3, C= \(\dfrac{5}{16}:0,125-\left(2\dfrac{1}{4}-0,6\right).\dfrac{10}{11}\)
4, D= \(6\dfrac{5}{12}:2\dfrac{5}{4}+11\dfrac{1}{4}.\left(\dfrac{1}{3}-\dfrac{1}{5}\right)\)
\(1,A=-\dfrac{3}{4}.\left(0,125-1\dfrac{1}{2}\right):\dfrac{33}{16}-25\%\)
\(A=-\dfrac{3}{4}.\left(0,125-\dfrac{3}{2}\right):\dfrac{33}{16}-\dfrac{1}{4}\)
\(A=-\dfrac{3}{4}.\left(-\dfrac{11}{8}\right):\dfrac{33}{16}-\dfrac{1}{4}\)
\(A=\dfrac{33}{32}:\dfrac{33}{16}-\dfrac{1}{4}\)
\(A=\dfrac{33}{32}.\dfrac{16}{33}-\dfrac{1}{4}\)
\(A=\dfrac{1}{2}-\dfrac{1}{4}\)
\(A=\dfrac{2}{4}-\dfrac{1}{4}\)
\(A=\dfrac{1}{4}\)
\(D=6\dfrac{5}{12}:2\dfrac{5}{4}+11\dfrac{1}{4}.\left(\dfrac{1}{3}-\dfrac{1}{5}\right)\)
\(D=\dfrac{77}{12}:\dfrac{13}{4}+\dfrac{45}{4}.\dfrac{2}{15}\)
\(D=\dfrac{77}{39}+\dfrac{3}{2}\)
\(D=\dfrac{271}{78}\)
\(C=\dfrac{5}{16}:0,125-\left(2\dfrac{1}{4}-0,6\right).\dfrac{10}{11}\)
\(C=\dfrac{5}{16}:0,125-\left(\dfrac{9}{4}-0,6\right).\dfrac{10}{11}\)
\(C=\dfrac{5}{16}:0,125-\dfrac{33}{20}.\dfrac{10}{11}\)
\(C=\dfrac{5}{2}-\dfrac{3}{2}\)
\(C=1\)
Cho \(\dfrac{x+16}{9}=\dfrac{y-5}{16}=\dfrac{z+9}{25}\)và 2x3-1=15. Tính B=x+y+z
2x^3-1=15
=>2x^3=16
=>x=2
(x+16)/9=(y-5)/16=(z+9)/25
=>(y-5)/16=(z+9)/25=2
=>y-5=32 và z+9=50
=>y=37 và z=41
B=x+y+z=2+37+41=80
So sánh
a)17/20 và 18/19 b)19/18 và 2023/2022
c)13/17 và 135/175 d)53/63 và 535/636
e)13/15 và 22/25 \(\dfrac{2023}{2023^2+1}và\dfrac{2022}{2022^2+1}\)
a) \(\dfrac{17}{20}< \dfrac{18}{20}< \dfrac{18}{19}\Rightarrow\dfrac{17}{20}< \dfrac{18}{19}\)
b) \(\dfrac{19}{18}>\dfrac{19+2024}{18+2024}=\dfrac{2023}{2022}\Rightarrow\dfrac{19}{18}>\dfrac{2023}{2022}\)
c) \(\dfrac{135}{175}=\dfrac{27}{35}\)
\(\dfrac{13}{17}=\dfrac{26}{34}< \dfrac{26+1}{34+1}=\dfrac{27}{35}\)
\(\Rightarrow\dfrac{13}{17}< \dfrac{135}{175}\)
Tìm số thích hơp cho ?:
a) \(\dfrac{3}{16}:\dfrac{?}{8}=\dfrac{3}{4};\)
b) \(\dfrac{1}{25}:\dfrac{-3}{?}=\dfrac{-1}{15};\)
c) \(\dfrac{?}{12}:\dfrac{-4}{9}=\dfrac{-3}{16}.\)
\(a.\)
\(\dfrac{3}{16}:\dfrac{?}{8}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{3}{16}\cdot\dfrac{8}{?}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{3}{2?}=\dfrac{3}{4}\)
\(\Leftrightarrow?=2\)
\(b.\)
\(\dfrac{1}{25}:-\dfrac{3}{?}=-\dfrac{1}{15}\)
\(\Leftrightarrow\dfrac{1}{25}\cdot\dfrac{-?}{3}=-\dfrac{1}{15}\)
\(\Leftrightarrow\dfrac{-?}{75}=-\dfrac{1}{15}\)
\(\Leftrightarrow?=\dfrac{75}{15}=5\)
\(c.\)
\(\dfrac{?}{12}:-\dfrac{4}{9}=-\dfrac{3}{16}\)
\(\Leftrightarrow\dfrac{?}{12}\cdot\dfrac{-9}{4}=-\dfrac{3}{16}\)
\(\Leftrightarrow\dfrac{-3?}{16}=-\dfrac{3}{16}\)
\(\Leftrightarrow?=1\)
Mk gọi ? = x nha
a) \(\dfrac{3}{16}:\dfrac{x}{8}=\dfrac{3}{4}\)
\(\dfrac{x}{8}=\dfrac{3}{16}:\dfrac{3}{4}\)
\(\dfrac{x}{8}=\dfrac{1}{4}\)
⇒\(x=\dfrac{1.8}{4}=2\)
b) \(\dfrac{1}{25}:\dfrac{-3}{x}=\dfrac{-1}{15}\)
\(\dfrac{-3}{x}=\dfrac{1}{25}:\dfrac{-1}{15}\)
\(\dfrac{-3}{x}=\dfrac{-3}{5}\)
⇒x=5
c) \(\dfrac{x}{12}:\dfrac{-4}{9}=\dfrac{-3}{16}\)
\(\dfrac{x}{12}=\dfrac{-3}{16}.\dfrac{-4}{9}\)
\(\dfrac{x}{12}=\dfrac{1}{12}\)
⇒x=1
Bài 1. Thực hiện phép tính:
a) |5.0,6+\(\dfrac{2}{3}\)|- \(\dfrac{1}{3}\)
b)(0,25 - 1\(\dfrac{1}{4}\)) : 5 - \(\dfrac{1}{5}\).(-3)\(^2\)
c)\(\dfrac{14}{17}.\dfrac{7}{5}-\dfrac{-3}{17}:\dfrac{5}{7}\)
d)\(\dfrac{7}{16}+\dfrac{-9}{25}+\dfrac{9}{16}+\dfrac{-16}{25}\)
e)\(\dfrac{5}{6}+2\sqrt{\dfrac{4}{9}}\)
a) Ta có: \(\left|5\cdot0.6+\dfrac{2}{3}\right|-\dfrac{1}{3}\)
\(=\left|3+\dfrac{2}{3}\right|-\dfrac{1}{3}\)
\(=3+\dfrac{2}{3}-\dfrac{1}{3}\)
\(=3+\dfrac{1}{3}=\dfrac{10}{3}\)
b) Ta có: \(\left(0.25-1\dfrac{1}{4}\right):5-\dfrac{1}{5}\cdot\left(-3\right)^2\)
\(=\left(\dfrac{1}{4}-\dfrac{5}{4}\right)\cdot\dfrac{1}{5}-\dfrac{1}{5}\cdot9\)
\(=\dfrac{-4}{4}\cdot\dfrac{1}{5}-\dfrac{1}{5}\cdot9\)
\(=\dfrac{1}{5}\cdot\left(-1-9\right)\)
\(=-10\cdot\dfrac{1}{5}=-2\)
c) Ta có: \(\dfrac{14}{17}\cdot\dfrac{7}{5}-\dfrac{-3}{17}:\dfrac{5}{7}\)
\(=\dfrac{14}{17}\cdot\dfrac{7}{5}-\dfrac{-3}{17}\cdot\dfrac{7}{5}\)
\(=\dfrac{7}{5}\cdot\left(\dfrac{14}{17}+\dfrac{3}{17}\right)\)
\(=\dfrac{7}{5}\cdot1=\dfrac{7}{5}\)
d) Ta có: \(\dfrac{7}{16}+\dfrac{-9}{25}+\dfrac{9}{16}+\dfrac{-16}{25}\)
\(=\left(\dfrac{7}{16}+\dfrac{9}{16}\right)-\left(\dfrac{9}{25}+\dfrac{16}{25}\right)\)
\(=\dfrac{16}{16}-\dfrac{25}{25}\)
\(=1-1=0\)
e) Ta có: \(\dfrac{5}{6}+2\sqrt{\dfrac{4}{9}}\)
\(=\dfrac{5}{6}+2\cdot\dfrac{2}{3}\)
\(=\dfrac{5}{6}+\dfrac{4}{3}\)
\(=\dfrac{5}{6}+\dfrac{8}{6}=\dfrac{13}{6}\)
So sánh các phân số sau:
a) \(\dfrac{23}{27}\) và \(\dfrac{22}{29}\)
b) \(\dfrac{15}{25}\) và \(\dfrac{25}{49}\)
a) Ta có \(\dfrac{23}{27}>\dfrac{23}{29};\dfrac{23}{29}>\dfrac{22}{29}\)
Vậy \(\dfrac{23}{27}>\dfrac{22}{29}\)
b) Ta có \(\dfrac{15}{25}=1-\dfrac{2}{5}\)
\(\dfrac{25}{49}=1-\dfrac{24}{49}\)
Vì \(\dfrac{2}{5}=\dfrac{24}{60}< \dfrac{24}{49}\)
Vậy \(\dfrac{15}{25}>\dfrac{25}{49}\)
23/27 lớn hơn 22/29
15/25 lớn hơn 25/49
Tính giá trị biểu thức M=a+b+c
cho bít \(\dfrac{a+16}{9}=\dfrac{b-25}{16}=\dfrac{c+9}{25}\)
Và 2a3-1=15
cho \(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\) và \(2x^3-1=15\) Tính B=x+y+z
Ta có :
\(2x^3-1=15\)
\(\Leftrightarrow2x^3=16\)
\(\Leftrightarrow x^3=8\)
\(\Leftrightarrow x=2\)
Thay \(x=2\) zô : \(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)
\(\Leftrightarrow\dfrac{2+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)
\(\Leftrightarrow\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{18}{9}=2\)
+) \(\dfrac{y-25}{16}=2\)
\(\Leftrightarrow y-25=32\)
\(\Leftrightarrow y=57\)
+) \(\dfrac{z+9}{25}=2\)
\(\Leftrightarrow z+9=50\)
\(\Leftrightarrow z=41\)
Ta có :
\(\left\{{}\begin{matrix}x=2\\y=57\\z=41\end{matrix}\right.\) \(\Leftrightarrow x+y+z=2+57+41=100\)