Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyền Hoàng Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 11 2023 lúc 21:46

Bài 1:

a: \(A=x^2+2x+4\)

\(=x^2+2x+1+3\)

\(=\left(x+1\right)^2+3>=3\forall x\)

Dấu '=' xảy ra khi x+1=0

=>x=-1

Vậy: \(A_{min}=3\) khi x=-1

b: \(B=x^2-20x+101\)

\(=x^2-20x+100+1\)

\(=\left(x-10\right)^2+1>=1\forall x\)

Dấu '=' xảy ra khi x-10=0

=>x=10

Vậy: \(B_{min}=1\) khi x=10

c: \(C=x^2-2x+y^2+4y+8\)

\(=x^2-2x+1+y^2+4y+4+3\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\forall x\)

Dấu '=' xảy ra khi x-1=0 và y+2=0

=>x=1 và y=-2

Vậy: \(C_{min}=3\) khi (x,y)=(1;-2)

Bài 2:

a: \(A=5-8x-x^2\)

\(=-\left(x^2+8x\right)+5\)

\(=-\left(x^2+8x+16-16\right)+5\)

\(=-\left(x+4\right)^2+16+5=-\left(x+4\right)^2+21< =21\forall x\)

Dấu '=' xảy ra khi x+4=0

=>x=-4

b: \(B=x-x^2\)

\(=-\left(x^2-x\right)\)

\(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\forall x\)

Dấu '=' xảy ra khi \(x-\dfrac{1}{2}=0\)

=>\(x=\dfrac{1}{2}\)

c: \(C=4x-x^2+3\)

\(=-x^2+4x-4+7\)

\(=-\left(x^2-4x+4\right)+7\)

\(=-\left(x-2\right)^2+7< =7\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

d: \(D=-x^2+6x-11\)

\(=-\left(x^2-6x+11\right)\)

\(=-\left(x^2-6x+9+2\right)\)

\(=-\left(x-3\right)^2-2< =-2\forall x\)

Dấu '=' xảy ra khi x-3=0

=>x=3

Nguyên Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2021 lúc 9:36

a) Ta có: \(25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)

b) Ta có: \(9x^2-6x+2\)

\(=9x^2-6x+1+1\)

\(=\left(3x-1\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)

c) Ta có: \(-x^2+2x-2\)

\(=-\left(x^2-2x+2\right)\)

\(=-\left(x^2-2x+1+1\right)\)

\(=-\left(x-1\right)^2-1\le-1\forall x\)

Dấu '=' xảy ra khi x-1=0

hay x=1

d) Ta có: \(x^2+12x+39\)

\(=x^2+12x+36+3\)

\(=\left(x+6\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi x=-6

e) Ta có: \(-x^2-12x\)

\(=-\left(x^2+12x+36-36\right)\)

\(=-\left(x+6\right)^2+36\le36\forall x\)

Dấu '=' xảy ra khi x=-6

f) Ta có: \(4x-x^2+1\)

\(=-\left(x^2-4x-1\right)\)

\(=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2

Nguyên Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2021 lúc 9:39

a) Ta có: \(25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)

b) Ta có: \(9x^2-6x+2\)

\(=9x^2-6x+1+1\)

\(=\left(3x-1\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)

c) Ta có: \(-x^2+2x-2\)

\(=-\left(x^2-2x+2\right)\)

\(=-\left(x^2-2x+1+1\right)\)

\(=-\left(x-1\right)^2-1\le-1\forall x\)

Dấu '=' xảy ra khi x=1

Nguyễn Ngọc Lộc
2 tháng 7 2021 lúc 9:46

( Mình trình bày mẫu câu a các câu khác mình làm tắt lại nhưng tương tự trình bày câu a nha )

a, Ta có : \(25x^2-20x+7=\left(5x\right)^2-2.5x.2+2^2+3\)

\(=\left(5x-2\right)^2+3\)

Thấy : \(\left(5x-2\right)^2\ge0\forall x\in R\)

\(\Rightarrow\left(5x-2\right)^2+3\ge3\forall x\in R\)

Vậy \(Min=3\Leftrightarrow5x-2=0\Leftrightarrow x=\dfrac{2}{5}\)

b, \(=9x^2-2.3x+1+1=\left(3x-1\right)^2+1\ge1\)

Vậy Min = 1 <=> x = 1/3

c, \(=-x^2+2x-1-1=-\left(x^2-2x+1\right)-1=-\left(x-1\right)^2-1\le-1\)

Vậy Max = -1 <=> x = 1

d, \(=x^2+2.x.6+36+3=\left(x+6\right)^2+3\ge3\)

Vậy Min = 3 <=> x = - 6

e, \(=-x^2-2.x.6-36+36=-\left(x+6\right)^2+36\le36\)

Vậy Max = 36 <=> x = -6 .

f, \(=-x^2+4x-4+5=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\le5\)

Vậy Max = 5 <=> x = 2

cute
Xem chi tiết
Nguyễn Huy Tú
15 tháng 2 2022 lúc 21:52

a, \(A=-\left(x^2+8x+16-16\right)+5=-\left(x+4\right)^2+21\le21\forall x\)

Dấu ''='' xảy ra khi x = - 4

Vậy GTLN của A là 21 tại x = -4 

b, \(B=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\)

\(=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\forall x;y\)

Dấu ''='' xảy ra khi x = 1 ; y = -1/2 

Vậy GTLN của B là 7 tại x = 1 ; y = -1/2 

Nguyễn Minh Anh
15 tháng 2 2022 lúc 21:51

TK

undefined

Dark_Hole
15 tháng 2 2022 lúc 21:52

A = 5 − 8 x − x 2

= -(x2+8x+16)+21

= 21-(x+4)2 

Với mọi x thì ( x + 4 ) 2 >= 0

=> 21−(x+4)2=<21 Hay A=<21

Để A=21 thì (x+4)2=0

=>x+4=0

=> x = − 4

Câu sau để anh nghĩ đã nhé

Hũ Thối Đậu
Xem chi tiết
Kudo Shinichi
30 tháng 5 2022 lúc 9:30

\(9-9x^2+2x-\dfrac{2}{9}\\ =-\left(9x^2-2x+\dfrac{1}{9}-\dfrac{80}{9}\right)\\ =-\left(3x+\dfrac{1}{3}\right)^2+\dfrac{80}{9}\le\dfrac{80}{9}\)

Dấu "=" xảy ra khi \(-\left(3x+\dfrac{1}{3}\right)^2=0\)

\(\Leftrightarrow3x+\dfrac{1}{3}=0\\ \Leftrightarrow3x=-\dfrac{1}{3}\\ \Leftrightarrow x=-\dfrac{1}{9}\)

Vậy \(Max=\dfrac{80}{9}\Leftrightarrow x=-\dfrac{1}{9}\)

Quảng Nguyễn
30 tháng 5 2022 lúc 10:13

9 - 9x2 + 2x - \(\dfrac{2}{9}\)
=\(\dfrac{80}{9}\)-[(3x)2-2x+(\(\dfrac{1}{3}\))2]
=\(\dfrac{80}{9}\)-(3x-\(\dfrac{1}{3}\))2
Vì (3x-\(\dfrac{1}{3}\))2≥0 ⇒-(3x-\(\dfrac{1}{3}\))2≤0⇒\(\dfrac{80}{9}\)-(3x-\(\dfrac{1}{3}\))2\(\dfrac{80}{9}\)
Trường hợp dấu bằng xảy ra khi: (3x-\(\dfrac{1}{3}\))2=0⇒3x-\(\dfrac{1}{3}\)=0⇒3x=\(\dfrac{1}{3}\)⇒x=\(\dfrac{1}{9}\)
Vậy GTLN của biểu thức là \(\dfrac{80}{9}\) khi x=\(\dfrac{1}{9}\)

 

 
Đinh Cẩm Tú
Xem chi tiết
Akai Haruma
11 tháng 1 2021 lúc 19:08

Lời giải:

a)

$A=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$Vì $(x+4)^2\geq 0$ nên $A=21-(x+4)^2\leq 21$

Vậy GTLN của $A$ là $21$. Giá trị này đạt tại $x+4=0\Leftrightarrow x=-4$

b) 

$B=5-x^2+2x-4y^2-4y=5-(x^2-2x)-(4y^2+4y)$

$=7-(x^2-2x+1)-(4y^2+4y+1)$

$=7-(x-1)^2-(2y+1)^2$

Vì $(x-1)^2\geq 0; (2y+1)^2\geq 0$ với mọi $x,y$ nên $B=7-(x-1)^2-(2y+1)^2\leq 7$Vậy GTLN của $B$ là $7$ tại $x=1; y=\frac{-1}{2}$

Xem chi tiết
Nguyễn Văn Tuấn Anh
25 tháng 6 2019 lúc 13:30

TL:

a,\(-\left(x^2-2x+1\right)+1\)1

\(-\left(x-1\right)^2+1\) \(\le\) 1

=>giá trị lớn nhất của biểu thức là 1

vậy........

b,\(-\left(9x^2+6x+1\right)+20\) 

   \(-\left(3x+1\right)^2+20\) 

  \(\le20\) 

=>giá trị lớn nhất cuar biểu thức là 20

vậy.........

hc tốt

13V&#x1EAD;y&#xA0;MaxB=20&#xA0;khi&#xA0;x=&#x2212;13" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">b) B=196x9x2B=2016x9x2B=20(1+6x+9x2)B=20(1+3x)2Do (1+3x)20xB=20(1+3x)220xDu "=" xy ra khi:(1+3x)2=01+3x=03x=1x=13Vy MaxB=20 khi x=13

༺ミ𝒮σɱєσиє...彡༻
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 11 2021 lúc 15:23

\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)

ILoveMath
13 tháng 11 2021 lúc 15:24

a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

Dấu "=" \(\Leftrightarrow x=-1\)

b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)

c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)

Dấu "=" \(\Leftrightarrow x=2\)

NGUYÊN ĐZ
6 tháng 1 lúc 13:45

um


Ngọc Hà
Xem chi tiết