Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Nguyễn Diệu Linh
Xem chi tiết
Hồng Phúc
3 tháng 9 2021 lúc 9:22

a, \(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3}{\sqrt{x}+3}\)

b, \(A\in Z\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}\in Z\)

\(\Leftrightarrow\sqrt{x}+3\inƯ_3=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow\sqrt{x}=0\)

\(\Leftrightarrow x=0\)

Nguyễn Hoàng Minh
3 tháng 9 2021 lúc 9:24

\(a,A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\left(x\ge0;x\ne9\right)\\ A=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\\ A=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\\ A=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)

\(b,A\in Z\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}\in Z\Leftrightarrow-3⋮\sqrt{x}+3\\ \Leftrightarrow\sqrt{x}+3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{-6;-4;-2;0\right\}\)

Mà \(\sqrt{x}\ge0\)

\(\Leftrightarrow x\in\left\{0\right\}\)

Vậy \(x=0\) thì A nguyên

 

Dương Taurus
Xem chi tiết
Lê Thị Thục Hiền
24 tháng 8 2019 lúc 21:50

P=\(\frac{2\sqrt{x}+\left|\sqrt{x}-1\right|}{3x+2\sqrt{x}-1}\)(đk :\(x\ge0,x\ne\frac{1}{9},x\ne1\))

=\(\frac{2\sqrt{x}+\left|\sqrt{x}-1\right|}{3x+3\sqrt{x}-\sqrt{x}-1}=\frac{2\sqrt{x}+\left|\sqrt{x}-1\right|}{\left(\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\)(1)

TH1 : \(0\le\sqrt{x}\le1\)

Từ (1)=> \(P=\frac{2\sqrt{x}+1-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}=\frac{1}{3\sqrt{x}-1}\)

TH2: x>1

Từ (1) => \(P=\frac{2\sqrt{x}+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}=\frac{1}{\sqrt{x}+1}\)

Vậy với \(0\le x\le1\) => \(P=\frac{1}{3\sqrt{x}-1}\)

x>1=> P=\(\frac{1}{\sqrt{x}+1}\)

Kiêm Hùng
24 tháng 8 2019 lúc 22:13

\(P=\frac{2\sqrt{x}+\left|\sqrt{x}-1\right|}{3x+2\sqrt{x}-1}\)

ĐK: \(x\ge0;x\ne\frac{1}{9}\)

\(TH_1:\sqrt{x}-1\ge0\Leftrightarrow x\ge1\)

\(P=\frac{2\sqrt{x}+\sqrt{x}-1}{3x+2\sqrt{x}-1}\\ =\frac{3\sqrt{x}-1}{3x+3\sqrt{x}-\sqrt{x}-1}\\ =\frac{3\sqrt{x}-1}{\left(3\sqrt{x}-1\right)\left(1+\sqrt{x}\right)}\\ =\frac{1}{1+\sqrt{x}}=\frac{1-\sqrt{x}}{1-x}\)

\(TH_2:\sqrt{x}-1< 0\Leftrightarrow x< 1\)

\(P=\frac{2\sqrt{x}+1-\sqrt{x}}{3x+2\sqrt{x}-1}\\ =\frac{\sqrt{x}+1}{3x+3\sqrt{x}-\sqrt{x}-1}\\ =\frac{\sqrt{x}+1}{\left(3\sqrt{x}-1\right)\left(1+\sqrt{x}\right)}\\ =\frac{1}{3\sqrt{x}-1}\\ =\frac{3\sqrt{x}+1}{9x-1}\)

vi lê
Xem chi tiết
HT2k02
8 tháng 4 2021 lúc 13:10

\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{x+1}{x-1}\\ =\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x-1}{x+1}=\dfrac{2}{x-1}\cdot\dfrac{x-1}{x+1}\\ =\dfrac{2}{x+1}\)

Phí Đức
8 tháng 4 2021 lúc 14:26

\(\bigg(\dfrac{1}{\sqrt x-1}-\dfrac{1}{\sqrt x+1}\bigg):\dfrac{x+1}{x-1}\\=\bigg(\dfrac{\sqrt x+1}{(\sqrt x-1)(\sqrt x+1)}-\dfrac{\sqrt x-1}{(\sqrt x-1)(\sqrt x+1)}\bigg.\dfrac{x-1}{x+1}\\=\dfrac{\sqrt x+1-\sqrt x+1}{(\sqrt x-1)(\sqrt x+1)}.\dfrac{(\sqrt x-1)(\sqrt x+1)}{x+1}\\=\dfrac{2}{x+1}\)

Đặng Hồng Phong
Xem chi tiết
Nguyễn Huy Tú
12 tháng 4 2022 lúc 18:34

a, Với x khác 1 

\(A=\dfrac{x^2+x+1-3x^2+2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}=-\dfrac{1}{x^2+x+1}\)

b, Ta có \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\Rightarrow\dfrac{-1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}< 0\)

Vậy với x khác 1 thì bth A luôn nhận gtri âm 

Nguyễn Minh Uyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 8 2022 lúc 22:16

Sửa đề: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\cdot\dfrac{x-4}{4-\sqrt{x}}\)

a: \(P=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{x-4}\cdot\dfrac{x-4}{4-\sqrt{x}}=\dfrac{2x}{4-\sqrt{x}}\)

b: Để P>3 thì P-3>0

\(\Leftrightarrow-\dfrac{2x}{\sqrt{x}-4}-3>0\)

\(\Leftrightarrow\dfrac{-2x-3\sqrt{x}+12}{\sqrt{x}-4}>0\)

\(\Leftrightarrow\dfrac{5\sqrt{x}-12}{\sqrt{x}-4}< 0\)

=>12/5<căn x<4

=>144/25<x<16

nguyen quang huy
Xem chi tiết
Phạm Hồ Thanh Quang
22 tháng 6 2017 lúc 7:00

\(\frac{x^4-x^3-x+1}{x^4+x^3+3x^2+2x+2}\)
\(=\frac{x^3\left(x-1\right)-\left(x-1\right)}{x^4+x^3+x^2+2x^2+2x+2}\)
\(=\frac{\left(x-1\right)\left(x^3-1\right)}{x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)}\)
\(=\frac{\left(x-1\right)\left(x-1\right)\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(x^2+2\right)}\)
\(=\frac{\left(x-1\right)^2}{\left(x^2+2\right)}\)

Nguyen
Xem chi tiết
Sáng
21 tháng 8 2018 lúc 20:25

\(A=\dfrac{\sqrt{2+\sqrt{4-x^2}}\left(\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right)}{4+\sqrt{4-x^2}}\)

\(\Rightarrow A=\sqrt{\left(2+x\right)^{^{ }3}}-\sqrt{\left(2-x\right)^3}=\left(\sqrt{2+x}-\sqrt{2-x}\right)\left(4+\sqrt{4-x^2}\right)\)

\(\Rightarrow A=\dfrac{\sqrt{4+2\sqrt{4-x^2}}\left(\sqrt{2+x}-\sqrt{2-x}\right)\left(4+\sqrt{4-x^2}\right)}{\sqrt{2}\left(4+\sqrt{4-x^2}\right)}\)

\(\Rightarrow A=\dfrac{\left(\sqrt{2+x}+\sqrt{2-x}\right)\left(\sqrt{2+x}-\sqrt{2-x}\right)}{\sqrt{2}}=2\sqrt{2}\)

EDOGAWA CONAN
21 tháng 8 2018 lúc 21:46

\(2\sqrt{2}\)

Phạm Hoàng Lê Nguyên
Xem chi tiết
Narumi
Xem chi tiết
Trà My
16 tháng 7 2016 lúc 21:49

\(D=\frac{3\sqrt{1-4x+4x^2}}{2x-1}=\frac{3\sqrt{\left(2x\right)^2-2.2x.1+1^2}}{2x-1}=\frac{3\sqrt{\left(2x-1\right)^2}}{2x-1}=\frac{3.\left(2x-1\right)}{2x-1}=3\)

mình làm lại nè, bài kia mình hơi nhầm 1 chút

s2 Lắc Lư  s2
16 tháng 7 2016 lúc 21:30

\(=\frac{3\left(2x-1\right)}{2x-1}=3\)

s2 Lắc Lư  s2
16 tháng 7 2016 lúc 21:33

p/s tới 1 người

hôm nay onl nhưng ko chat đc,,,pp nha nn