Phân tích đa thức thành nhân tử :
\(x^2+2x+1\)
Nhanh nha
1,phân tích đa thức thành nhân tử
3x(x-y)-(y-x)2
2,tìm x
2x(1-2x)+(2x-3)(2x+3)=5
Nhanh nha mik cần gấp
1.Ta có: 3x(x - y) - (y - x)2 = 3x(x - y) - (x - y)2 = (3x - x + y)(x - y) = (2x + y)(x - y)
2. Ta có: 2x(1 - 2x) + (2x - 3)(2x + 3) = 5
=> 2x - 4x2 + 4x2 - 9 = 5
=> 2x = 5 + 9
=> 2x = 14
=> x = 14 : 2 = 7
Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung:
a) x( x - y) + 2( y - x)
Giúp mik nhanh câu này nha:(
\(x\left(x-y\right)+2\left(y-x\right)=x\left(x-y\right)-2\left(x-y\right)=\left(x-y\right)\left(x-2\right)\)
\(=x\left(x-y\right)-2\left(x-y\right)=\left(x-2\right)\left(x-y\right)\)
Phân tích đa thức thành nhân tử:
\(x^3+2x^2+2x+1\)
\(=x^3+x^2+x^2+x+x+1=x^2\left(x+1\right)+x\left(x+1\right)+x+1\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
x3 + 2x2 + 2x + 1
= (x3 + 1) + (2x2 + 2x)
= (x + 1)(x2 + x + 1) + 2x(x + 1)
= (x + 1)(x2 + x + 1 + 2x)
= (x + 1)(x2 + 3x + 1)
Chúc bạn học tốt
Ta có: \(x^3+2x^2+2x+1\)
\(=\left(x^3+1\right)+\left(2x^2+2x\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
Phân tích đa thức thành nhân tử
(x-1)\(^2\)-2(x-1)(2x+1)+(2x+1)\(^2\)
`(x-1)^2-2(x-1)(2x+1)+(2x+1)^2`
`=(x-1-2x-1)^2`
`=(-x-2)^2`
\(\left(x-1\right)^2-2\left(x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\)
\(=\left(x-1-2x-1\right)^2=\left(-x-2\right)^2=\left(x+2\right)^2\)
Phân tích đa thức thành nhân tử (x^2+2x)(x^2+2x+2)+1
phân tích đa thức thành nhân tử (thêm bớt cùng một hạng tử):
x^3 - 2x - 4
phân tích đa thức thành nhân tử (đặt biến phụ):
x^4 + 2x^3 + 5x^2 + 4x - 12
#)Giải :
\(x^3-2x-4\)
\(=x^3+2x^2-2x^2+2x-4x-4\)
\(=x^3+2x^2+2x-2x^2-4x-4\)
\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(x^4+2x^3+5x^2+4x-12\)
\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)
\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)
Câu 1.
Đoán được nghiệm là 2.Ta giải như sau:
\(x^3-2x-4\)
\(=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
Đa thức x^3 - 2x^2 + x - xy^2 được phân tích thành nhân tử
Đa thức x^3 + 3x^2y +3xy^2 + y^3 được phân tích thành nhân tử là
Đa thức 4x(2y-z)+7y(2y-z) được phân tích thành nhân tử là:
Đa thức x^2+4x+4 được phân tích thành nhân tử là
Tìm x biết x(x-2)-x+2
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Phân tích đa thức thành nhân tử
y^2-(x^2-2x+1)
\(y^2-\left(x^2-2x+1\right)=y^2-\left(x-1\right)^2=\left(y-x+1\right)\left(y+x-1\right)\)
\(y^2-\left(x^2-2x+1\right)=y^2-\left(x-1\right)^2=\left(y-x+1\right).\left(y+x-1\right)\)
y\(^2\) - ( x\(^2\) - 2x + 1 )
⇔ y\(^2\) - ( x - 1 )\(^2\)
⇔ ( y - x - 1 ) ( y + x - 1 )
Phân tích đa thức (2x-1)^2-(x 3)^2 thành nhân tử
(2\(x\) - 1)2 - (3\(x\))2
= (2\(x\) - 1 - 3\(x\)).( 2\(x\) - 1+ 3\(x\))
= (- \(x\) - 1).(5\(x\) - 1)