Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lương Thế liêm
Xem chi tiết
Khánh Russew
3 tháng 8 2019 lúc 9:49

cos2x = 1- sin^x 
sin2x= 2sinxcosx 

Nhóm lại bình thường và giải thôi

Mai Anh
Xem chi tiết
Lê Thị Thục Hiền
30 tháng 6 2021 lúc 8:10

a)Đk:\(sinx\ne1\)

Pt\(\Leftrightarrow sin^2x+sinx=-2\left(sinx-1\right)\)

\(\Leftrightarrow sin^2x+3sinx-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{-3+\sqrt{17}}{2}\left(tm\right)\\sinx=\dfrac{-3-\sqrt{17}}{2}\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arcc.sin\left(\dfrac{-3+\sqrt{17}}{2}\right)+k2\pi\\x=\pi-arc.sin\left(\dfrac{-3+\sqrt{17}}{2}\right)+k2\pi\end{matrix}\right.\)(\(k\in Z\))

b)Đk:\(sinx\ne1\)

Pt \(\Leftrightarrow\dfrac{1-2sin^2x+sinx}{sinx-1}+1=0\)

\(\Leftrightarrow\dfrac{-\left(sinx-1\right)\left(2sinx+1\right)}{sinx-1}+1=0\)

\(\Leftrightarrow-\left(2sinx+1\right)+1=0\)

\(\Leftrightarrow sinx=0\) (tm)

\(\Leftrightarrow x=k\pi,k\in Z\)

Vậy...

Thư Nguyễn
Xem chi tiết
yuki
Xem chi tiết
Nhi Hoàng
Xem chi tiết
meme
19 tháng 8 2023 lúc 16:25

Để giải phương trình cos(2x) - sin(x) = 0, ta có thể sử dụng các công thức lượng giác để đưa phương trình về dạng phù hợp.

Bước 1: Sử dụng công thức cos(2x) = 2cos^2(x) - 1, phương trình trở thành 2cos^2(x) - 1 - sin(x) = 0.

Bước 2: Sử dụng công thức sin^2(x) + cos^2(x) = 1, ta có thể thay thế cos^2(x) bằng 1 - sin^2(x), phương trình trở thành 2(1 - sin^2(x)) - 1 - sin(x) = 0.

Bước 3: Giải phương trình 2 - 2sin^2(x) - 1 - sin(x) = 0.

Bước 4: Đặt sin(x) = t, phương trình trở thành 2 - 2t^2 - 1 - t = 0.

Bước 5: Rút gọn phương trình, ta có -2t^2 - t + 1 = 0.

Bước 6: Giải phương trình bậc hai trên, ta có thể sử dụng công thức hoặc phân tích thành nhân tử để tìm giá trị của t.

Bước 7: Giải phương trình -2t^2 - t + 1 = 0, ta tìm được hai giá trị t = -1 và t = 1/2.

Bước 8: Đặt sin(x) = -1 và sin(x) = 1/2, ta tìm được hai giá trị x = -π/2 và x = π/6.

Vậy, phương trình cos(2x) - sin(x) = 0 có hai nghiệm là x = -π/2 và x = π/6.

Nguyễn Lê Phước Thịnh
19 tháng 8 2023 lúc 19:50

ĐKXĐ: 1-sin x<>0

=>sin x<>1

=>x<>pi/2+k2pi

cos2x/1-sinx=0

=>cos2x=0

=>2x=pi/2+kpi

=>x=pi/2+kpi/2

Kết hợp ĐKXĐ, ta được: \(x\in\left\{pi+k2pi;\dfrac{3}{2}pi+k2pi;2pi+k2pi\right\}\)

Mai Thị Khánh Huyền
Xem chi tiết
Mai Thị Khánh Huyền
19 tháng 9 2017 lúc 19:23

hộ vs ae ơi

Nguyễn Kiều Anh
Xem chi tiết
Nguyễn Kiều Anh
28 tháng 9 2020 lúc 22:46

@Nguyễn Việt Lâm giúp em với ạ

Khách vãng lai đã xóa
Nguyễn Việt Lâm
29 tháng 9 2020 lúc 14:43

a/ \(4cos^3x-3cosx-4\left(2cos^2x-1\right)+3cosx-4=0\)

\(\Leftrightarrow4cos^3x-8cos^2x=0\)

\(\Leftrightarrow4cos^2x\left(cosx-2\right)=0\)

\(\Leftrightarrow cosx=0\Rightarrow x=\frac{\pi}{2}+k\pi\)

\(0< \frac{\pi}{2}+k\pi< 14\Rightarrow-\frac{1}{2}< k< \frac{14-\frac{\pi}{2}}{\pi}\Rightarrow k=\left\{0;1;2;3\right\}\)

\(\Rightarrow x=\left\{\frac{\pi}{2};\frac{3\pi}{2};\frac{5\pi}{2};\frac{7\pi}{2}\right\}\)

b/ Bạn coi lại đề, cái ngoặc thứ 2 thiếu \(\left(2cos\left(???\right)+cosx\right)\)

c/ Bạn coi lại đề, có 2 số hạng \(cos2x\) xuất hiện ở vế trái, cấp 3 chắc ko ai cho kiểu vậy đâu, nếu đúng thế thì người ta cộng luôn thành \(2cos2x\) cho rồi

Nguyễn Thúc Minh Phước
Xem chi tiết
Givemesome Flan
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 12 2022 lúc 18:43

\(cos2x+cosx+1=sin2x+sinx\)

\(\Leftrightarrow cos^2x-sin^2x+cosx+cos^2x+sin^2x=2sinx.cosx+sinx\)

\(\Leftrightarrow2cos^2x+cosx=2sinx.cosx+sinx\)

\(\Leftrightarrow cosx\left(2cosx+1\right)=sinx\left(2cosx+1\right)\)

\(\Leftrightarrow\left(2cosx+1\right)\left(sinx-cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2cosx+1=0\\sinx=cosx\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}cosx=-\dfrac{1}{2}\\tanx=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k2\pi\\x=\dfrac{\pi}{4}+k\pi\\\end{matrix}\right.\)