Chứng tỏ các đa thức sau không có nghiệm:
a) 2x2+3
b) -x4-3x2-7
. Cho các đa thức: P(x) = x4 - 5x + 2x2 + 1; Q(x) = 5x + x2 + 5 - 3x2 + x4
a) Tìm M(x) = P(x) + Q(x).
b) Chứng tỏ M(x) không có nghiệm.
`M(x)=P(x)+Q(x)`
`=x^4-5x+2x^2+1+5x+x^2+5-3x^2+x^4`
`=2x^4+6`
Đặt `M(x)=0`
`<=>2x^4+6=0`
`<=>x^4=-3`(vô lý vì `x^4>=0`)
Cho các đa thức: P(x) = x4 - 5x + 2x2 + 1; Q(x) = 5x + x2 + 5 - 3x2 + x4
a) Tìm M(x) = P(x) + Q(x).
b) Chứng tỏ M(x) không có nghiệm.
a) Ta có M(x)=P(x)+Q(x)
=(\(x^4-5x+2x^2+1\))+(\(5x+x^2+5-3x^2+x^4\))
=\(x^4-5x+2x^2+1\)+\(5x+x^2+5-3x^2+x^4\)
=(\(x^4+x^4\))+(-5x+5x)+(\(2x^2\)+\(x^2\)-\(3x^2\))+(1+5)
=\(2x^4\)+6
Vậy M(x)=\(2x^4+6\)
b)Vì 2x\(^4\)\(\ge\) 0 với \(\forall\) x
nên \(2x^4+6\) \(\ge\)0 với \(\forall\)x
\(\Rightarrow\)M(x) \(\ge\) 0 với \(\forall\) x
Vậy M(x) vô nghiệm
Chứng tỏ các đa thức sau không có nghiệm:
a) x2 +1; b) 2x2 + 1; c) x4 + 2.
a: Vì \(x^2+1>0\forall x\)
nên đa thức này vô nghiệm
b: \(2x^2+1>0\forall x\)
nên đa thức này vô nghiệm
c: \(x^4+2>0\forall x\)
nên đa thức này vô nghiệm
Mũ chẵn lớn hơn bằng 0 mà cộng thêm 1 số không âm nữa nên các đa thức trên luôn lớn hơn 0
Mình chứng minh với các đa thức mặc định giá trị bằng 0 nhé
Các số có mũ chẵn thì đều lớn hơn hoặc =0 nên khi cộng thêm một số lớn hơn 0 thì biểu thức sẽ lớn hơn 0 nên các đa thức trên không có nghiệm khi nhận giá trị =0
Phân tích các đa thức sau thành nhân tử
a,x4+2x3+3x2+2x+1
b,x4-4x3+2x2+4x+1
c,x4+x3+2x2+2x+4
Cho hai đa thức: A(x) = x4 + 2 – 3x2 – x3
và B(x) = 3x2 + x4 + 5
a/ Sắp xếp các hạng tử của đa thức A(x) và B(x) theo lũy thừa giảm dần của biến ?
b/ Tính A(x) + B(x)
c/ Chứng tỏ đa thức B(x) không có nghiệm
a: A(x)=x^4-x^3-3x^2+2
B(x)=x^4+3x^2+5
b: A(x)+B(x)=2x^4-x^3+7
c: B(x)=x^2(x^2+3)+5>0
=>B(x) ko có nghiệm
cho đa thức f(x)=2x6+3x2+5x3-2x2+4x4+x4+1-4x3-x4
a) thu gọn , sắp xếp theo lũy thừa tăng dần , chỉ ra hệ số cao nhất , bậc và hệ số tự do của đa thức
b) tính f(-1)
c) chứng tỏ đa thức f(x) không nghiệm
a) \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4+x^4+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(4x^4+x^4-x^4\right)+\left(5x^3-4x^3\right)+\left(3x^2-2x^2\right)+1\)
\(f\left(x\right)=1+x^2+x^3+4x^4+2x^6\)
Hệ số cao nhất là 4, đa thức có bậc là 6, hệ số tự do là 1
b) Khi \(f\left(-1\right)\) thì đa thức trở thành:
\(f\left(-1\right)=2.\left(-1\right)^6+4.\left(-1\right)^4+\left(-1\right)^3+\left(-1\right)^2+1\)
\(f\left(-1\right)=2+4+-1+1+1\)
\(f\left(-1\right)=7\)
c) Vì \(2x^6+4x^4+x^3+x^2+1\ge0\) nên đa thức \(f\left(x\right)\) không có nghiệm
Chứng tỏ đa thức sau không có nghiệm:A=x^2+3x+3
Các bạn làm ơn giúp mình với mình đang cần gấp nhé!
\(A=x^2+3x+3=x^2+2\cdot\frac{3}{2}\cdot x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+3\)
=> \(A=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{3}{2}\right)^2\ge0\) => \(A=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
=> Đa thức A vô nghiệm.
A(x)= x-2x2+3x5+x4+x+x2
B(x)= -2x2+x-2-x4+3x2-3x5
a.Thu gọn và sắp xếp hai đa thức trên theo lũy thừa giảm dần của biến
b.Tìn đa thức M(x) = A(x) + B(x)
c.Tính giá trị của đa thức M(x) khi x= -2
d.x=3 có phải là nghiệm của đa thức M(x) không? Vì sao
a: A(x)=3x^5+x^4+x^2+2x
B(x)=-3x^5-x^4+x^2+x-2
b: M(x)=3x^5+x^4+x^2+2x-3x^5-x^4+x^2+x-2
=2x^2+3x-2
c: M(-2)=8-6-2=0
d: M(3)=2*3^2+3*3-2=18+9-2=25
=>x=3 ko là nghiệm
a. Tìm nghiệm của đa thức A(x)= 6-2x
b. Cho đa thức P(x)= x4+2x2+1
1. Tính P(1),P= \(\left(\dfrac{-1}{2}\right)\)
2. Chứng tỏ rằng đa thức P(x) không có nghiệm
a) A(x) = 0 ⇔ 6 - 2x = 0 ⇔ x = 3
Nghiệm của đa thức là x = 3
b)1. P(1) = \(1^4+2.1^2+1\) = 4
P(\(-\dfrac{1}{2}\)) = \(\left(-\dfrac{1}{2}\right)^4+2\left(-\dfrac{1}{2}\right)^2+1\) = \(\dfrac{25}{16}\)
Ta có: P(x) = \(\left(x^2+1\right)^2\)
Vì \(\left(x^2+1\right)^2\) ≥ 0
Nên P(x) = 0 khi \(x^2+1=0\) ⇔ \(x^2=-1\) (vô lý)
Vậy P(x) không có nghiệm
a) Đặt A(x)=0
\(\Leftrightarrow6-2x=0\)
\(\Leftrightarrow2x=6\)
hay x=3
Vậy: x=3 là nghiệm của đa thức A(x)
b)
1: Thay x=1 vào đa thức P(x), ta được:
\(P\left(1\right)=1^4+2\cdot1^2+1=1+2+1=4\)
Thay \(x=-\dfrac{1}{2}\) vào đa thức P(x), ta được:
\(P\left(-\dfrac{1}{2}\right)=\left(-\dfrac{1}{2}\right)^4+2\cdot\left(-\dfrac{1}{2}\right)^2+1=\dfrac{1}{16}+\dfrac{1}{2}+1=\dfrac{25}{16}\)
Cho 2 đa thức A(x)=2x2-5+9x và B(x)=3x2+9x-1
a) Tìm đa thức M(x) sao cho A(x)+M(x)=B(x)
b) Chứng tỏ rằng đa thức M(x) không có nghiệm.
Giúp mik vs ạ, mik cảm ơn!
`a) A(x) + M(x) = B(x)`
`->( 2x^2 - 5 + 9x ) + M(x) = ( 3x^2 + 9x - 1 )`
`-> M(x) = ( 3x^2 + 9x - 1 ) - ( 2x^2 - 5 + 9x )`
`-> M(x) = 3x^2 + 9x - 1 - 2x^2 + 5 - 9x`
`-> M(x) = x^2 + 4`
__________________________________
`b)` Cho `M(x) = 0`
`-> x^2 + 4 = 0`
`-> x^2 = -4` (Vô lí vì `x^2 >= 0` mà `-4 < 0`)
Vậy đa thức `M(x)` không có nghiệm
a, ta có A(x) + M(x)= B(x)
=> M(x)= B(x) - A(x)= (3x2+9x-1) -(2x2-5+9x)
= 3x2+9x-1 -2x2 +5 -9x
= (3x2-2x2) +( 9x-9x)+(5-1)
= x2 +4
b, Ta có x2> hoặc bằng 0 => x2+4 >0