Những câu hỏi liên quan
myyyy
Xem chi tiết
myyyy
24 tháng 9 2023 lúc 19:23

help

Lê Hồng Anh
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 3 2021 lúc 7:36

Giới hạn đã cho hữu hạn khi \(\sqrt{ax+b}-3=0\) có nghiệm \(x=3\)

\(\Rightarrow\sqrt{3a+b}=3\Rightarrow3a+b=9\Rightarrow b=9-3a\)

\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{ax+9-3a}-3}{3\left(9-x^2\right)}=\lim\limits_{x\rightarrow3}\dfrac{a\left(x-3\right)}{-3\left(x+3\right)\left(x-3\right)\left(\sqrt{ax+9-3a}+3\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{-a}{3\left(x+3\right)\left(\sqrt{ax+9-3a}+3\right)}=\dfrac{-a}{18.6}=\dfrac{1}{54}\Rightarrow a=-2\)

\(\Rightarrow b=15\)

Hobiee
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 11 2023 lúc 20:33

\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{x^2+1}+x-1\right)\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^2+1-\left(x-1\right)^2}{\sqrt{x^2+1}-x+1}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^2+1-x^2+2x-1}{-x\sqrt{1+\dfrac{1}{x^2}}-x+1}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-2x}{x\left(-\sqrt{1+\dfrac{1}{x^2}}-1+\dfrac{1}{x}\right)}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-2}{-\sqrt{1+\dfrac{1}{x^2}}-1+\dfrac{1}{x}}\)

\(=\dfrac{-2}{-\sqrt{1+0}-1+0}=\dfrac{-2}{-1-1}=1\)

b: \(\lim\limits\dfrac{\sqrt{4n^2+n-1}+n}{\sqrt{n^4+2n^3-1}-n}\)

\(=\lim\limits\dfrac{n\left(\sqrt{4+\dfrac{1}{n}-\dfrac{1}{n^2}}+1\right)}{n^2\cdot\sqrt{1+\dfrac{2}{n}-\dfrac{1}{n^4}}-n^2\cdot\dfrac{1}{n}}\)

\(=\lim\limits\dfrac{n\left(\sqrt{4+\dfrac{1}{n}-\dfrac{1}{n^2}}+1\right)}{n^2\left(\sqrt{1+\dfrac{2}{n}-\dfrac{1}{n^4}}-\dfrac{1}{n}\right)}\)

\(=\lim\limits\dfrac{\sqrt{4+\dfrac{1}{n}-\dfrac{1}{n^2}}+1}{n\left(\sqrt{1+\dfrac{2}{n}-\dfrac{1}{n^4}}-\dfrac{1}{n}\right)}\)

\(=\lim\limits\dfrac{\sqrt{\dfrac{4}{n^2}+\dfrac{1}{n^3}-\dfrac{1}{n^4}}+\dfrac{1}{n}}{\sqrt{1+\dfrac{2}{n}-\dfrac{1}{n^4}}-\dfrac{1}{n}}\)

\(=\dfrac{0}{\sqrt{1+0-0}-0}=\dfrac{0}{1}=0\)

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
24 tháng 9 2023 lúc 23:01

Tham khảo:

Đỉnh S có tọa độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - m}}{{2.2}} =  - \frac{m}{4};{y_S} = f( - \frac{m}{4})\)

Vì hàm số bậc hai có \(a = 2 > 0\) nên ta có bảng biến thiên sau:

 

Hàm số đạt giá trị nhỏ nhất bằng \(f( - \frac{m}{4}).\)

Hàm số giảm trên \(( - \infty ; - \frac{m}{4})\) và tăng trên \(( - \frac{m}{4}; + \infty )\)

Theo giả thiết, ta có:

Hàm số giảm trên khoảng \(\left( { - \infty ;1} \right)\)\( \Rightarrow \left( { - \infty ;1} \right) \subset ( - \infty ; - \frac{m}{4}) \Leftrightarrow 1 \le  - \frac{m}{4}.\)

Tương tự hàm số tăng trên khoảng \(\left( {1; + \infty } \right)\)\( \Rightarrow \left( {1; + \infty } \right) \subset ( - \frac{m}{4}; + \infty ) \Leftrightarrow  - \frac{m}{4} \le 1.\)

Do đó: \( - \frac{m}{4} = 1\) hay \(m =  - 4\)

Lại có: Tập giá trị là \([9; + \infty )\)\( \Rightarrow \)Giá trị nhỏ nhất của hàm số bằng 9.

\( \Leftrightarrow f(1) = f( - \frac{m}{4}) = 9 \Leftrightarrow {2.1^2} + ( - 4).1 + n = 9 \Leftrightarrow n = 11.\)

Vậy \(m =  - 4,n = 11.\)

Lâm Tố Như
Xem chi tiết
Akai Haruma
20 tháng 3 2020 lúc 19:00

Lời giải:

\(\lim\limits_{x\to \pm\infty}\sqrt{x^2-3x+4}=\lim\limits_{x\to \pm\infty}\sqrt{x^2}.\lim\limits_{x\to \pm \infty}\sqrt{1-\frac{3}{x}+\frac{4}{x^2}}=\lim\limits_{x\to \pm\infty}|x|.1=+\infty \)

--------------

\(\lim\limits_{x\to +\infty}x(\sqrt{x^2+5}+x)=\lim\limits_{x\to +\infty}x^2.\lim\limits_{x\to +\infty}(\sqrt{1+\frac{5}{x^2}}+1)=2(+\infty )=+\infty \)

\(\lim\limits_{x\to -\infty}x(\sqrt{x^2+5}+x)=\lim\limits_{x\to -\infty}\frac{5x}{\sqrt{x^2+5}-x}=\lim\limits_{x\to -\infty}\frac{-5}{\sqrt{1+\frac{5}{x^2}}+1}=\frac{-5}{2}\)

----------------

\(\lim\limits_{x\to 2019}\frac{\sqrt{x+285}-48}{\sqrt{x-2018}-\sqrt{2020-x}}=\lim\limits_{x\to -\infty}(\sqrt{x+285}-48).\lim\limits_{x\to -\infty}\frac{1}{\sqrt{x-2018}-\sqrt{2020-x}}\)

\(=\lim\limits_{x\to 2019}\frac{x-2019}{\sqrt{x+285}+48}.\lim\limits_{x\to 2019}\frac{\sqrt{x-2018}+\sqrt{2020-x}}{2(x-2019)}=\lim\limits_{x\to 2019}\frac{\sqrt{x-2018}+\sqrt{2020-x}}{2(\sqrt{x+285}+48)}=\frac{1}{96}\)

Khách vãng lai đã xóa
Akai Haruma
16 tháng 3 2020 lúc 14:52

Lời giải:

\(\lim\limits_{x\to \pm\infty}\sqrt{x^2-3x+4}=\lim\limits_{x\to \pm\infty}\sqrt{x^2}.\lim\limits_{x\to \pm \infty}\sqrt{1-\frac{3}{x}+\frac{4}{x^2}}=\lim\limits_{x\to \pm\infty}|x|.1=+\infty \)

--------------

\(\lim\limits_{x\to +\infty}x(\sqrt{x^2+5}+x)=\lim\limits_{x\to +\infty}x^2.\lim\limits_{x\to +\infty}(\sqrt{1+\frac{5}{x^2}}+1)=2(+\infty )=+\infty \)

\(\lim\limits_{x\to -\infty}x(\sqrt{x^2+5}+x)=\lim\limits_{x\to -\infty}\frac{5x}{\sqrt{x^2+5}-x}=\lim\limits_{x\to -\infty}\frac{-5}{\sqrt{1+\frac{5}{x^2}}+1}=\frac{-5}{2}\)

----------------

\(\lim\limits_{x\to 2019}\frac{\sqrt{x+285}-48}{\sqrt{x-2018}-\sqrt{2020-x}}=\lim\limits_{x\to -\infty}(\sqrt{x+285}-48).\lim\limits_{x\to -\infty}\frac{1}{\sqrt{x-2018}-\sqrt{2020-x}}\)

\(=\lim\limits_{x\to 2019}\frac{x-2019}{\sqrt{x+285}+48}.\lim\limits_{x\to 2019}\frac{\sqrt{x-2018}+\sqrt{2020-x}}{2(x-2019)}=\lim\limits_{x\to 2019}\frac{\sqrt{x-2018}+\sqrt{2020-x}}{2(\sqrt{x+285}+48)}=\frac{1}{96}\)

Khách vãng lai đã xóa
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 3 2021 lúc 22:33

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{1-\sqrt{4x^2-x+5}}{-ax+2}=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{1}{x}+\sqrt{4-\dfrac{1}{x}+\dfrac{5}{x^2}}}{-a+\dfrac{2}{x}}=\dfrac{2}{-a}=\dfrac{2}{3}\)

\(\Rightarrow a=-3\)

Nguyễn Minh Đức
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 2 2020 lúc 19:49

Giới hạn này tiến đến đâu vậy bạn? 2 trường hợp khác nhau đúng ko?

\(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x^2+3x+5}}{\sqrt[3]{x^3+7x^2+8}}=\lim\limits_{x\rightarrow+\infty}\frac{x\sqrt{1+\frac{3}{x}+\frac{5}{x^2}}}{x\sqrt[3]{1+\frac{7}{x}+\frac{8}{x^3}}}=1\)

\(\lim\limits_{x\rightarrow-\infty}\frac{\sqrt{x^2+3x+5}}{\sqrt[3]{x^3+7x^2+8}}=\lim\limits_{x\rightarrow-\infty}\frac{\left|x\right|\sqrt{1+\frac{3}{x}+\frac{5}{x^2}}}{x\sqrt[3]{1+\frac{7}{x}+\frac{8}{x^3}}}=\lim\limits_{x\rightarrow-\infty}\frac{-x\sqrt{1+\frac{3}{x}+\frac{5}{x^2}}}{x\sqrt[3]{1+\frac{7}{x}+\frac{8}{x^3}}}=-1\)

Khách vãng lai đã xóa
Bobovàkisskhácnhau Ởđiểm...
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 9 2021 lúc 14:38

Công thức tính nhanh phương trình đường thẳng qua 2 cực trị của hàm bậc 3 dạng: \(y=ax^3+bx^2+cx+d\) là: \(y=\left(\dfrac{2c}{3}-\dfrac{2b^2}{9a}\right)x+\left(d-\dfrac{bc}{9a}\right)\)

Đường thẳng đi qua gốc tọa độ (2 cực trị thẳng hàng O) khi tung độ gốc bằng 0

\(\Rightarrow d-\dfrac{bc}{9a}=0\)

Áp dụng cho bài này: 

\(3-\dfrac{\left(-2\right).m}{9.\dfrac{1}{3}}=0\Rightarrow-2m=9\Rightarrow m=-\dfrac{9}{2}\in\left(-5;-3\right)\)

Huy Phạm
19 tháng 9 2021 lúc 14:12

C

Nguyễn Lê Phước Thịnh
19 tháng 9 2021 lúc 14:22

Chọn C

Jackson Roy
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 3 2020 lúc 22:13

Bạn tự hiểu là giới hạn khi x tiến tới dương vô cực

\(=lim\left[x\left(\sqrt{1-\frac{3}{x}+\frac{5}{x^2}}+a\right)\right]=lim\left[x\left(1-a\right)\right]\)

Do \(x\rightarrow+\infty\) nên để giới hạn đã cho bằng \(+\infty\Leftrightarrow1-a>0\Rightarrow a< 1\)

Khách vãng lai đã xóa