\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{x^2+1}+x-1\right)\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^2+1-\left(x-1\right)^2}{\sqrt{x^2+1}-x+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^2+1-x^2+2x-1}{-x\sqrt{1+\dfrac{1}{x^2}}-x+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-2x}{x\left(-\sqrt{1+\dfrac{1}{x^2}}-1+\dfrac{1}{x}\right)}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-2}{-\sqrt{1+\dfrac{1}{x^2}}-1+\dfrac{1}{x}}\)
\(=\dfrac{-2}{-\sqrt{1+0}-1+0}=\dfrac{-2}{-1-1}=1\)
b: \(\lim\limits\dfrac{\sqrt{4n^2+n-1}+n}{\sqrt{n^4+2n^3-1}-n}\)
\(=\lim\limits\dfrac{n\left(\sqrt{4+\dfrac{1}{n}-\dfrac{1}{n^2}}+1\right)}{n^2\cdot\sqrt{1+\dfrac{2}{n}-\dfrac{1}{n^4}}-n^2\cdot\dfrac{1}{n}}\)
\(=\lim\limits\dfrac{n\left(\sqrt{4+\dfrac{1}{n}-\dfrac{1}{n^2}}+1\right)}{n^2\left(\sqrt{1+\dfrac{2}{n}-\dfrac{1}{n^4}}-\dfrac{1}{n}\right)}\)
\(=\lim\limits\dfrac{\sqrt{4+\dfrac{1}{n}-\dfrac{1}{n^2}}+1}{n\left(\sqrt{1+\dfrac{2}{n}-\dfrac{1}{n^4}}-\dfrac{1}{n}\right)}\)
\(=\lim\limits\dfrac{\sqrt{\dfrac{4}{n^2}+\dfrac{1}{n^3}-\dfrac{1}{n^4}}+\dfrac{1}{n}}{\sqrt{1+\dfrac{2}{n}-\dfrac{1}{n^4}}-\dfrac{1}{n}}\)
\(=\dfrac{0}{\sqrt{1+0-0}-0}=\dfrac{0}{1}=0\)