\(\sqrt{\left(2-\sqrt{6}\right)^2}\)
Tính:
1.\(\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\) 4.\(\sqrt{\left(\sqrt{3}\right)^2+2.\left(\sqrt{3}\right).\left(1\right)+\left(1\right)^2}\)
2.\(\sqrt{\left(\sqrt{5}-\sqrt{6}\right)^2}\) 5.\(\sqrt{\left(\sqrt{5}\right)^2+2.\left(\sqrt{5}\right).\left(\sqrt{3}\right)+\left(\sqrt{3}\right)^2}\)
3.\(\sqrt{\left(2\sqrt{2}+\sqrt{3}\right)^2}\) 6.\(\sqrt{\left(\sqrt{6}\right)^2-2.\left(\sqrt{6}\right).\left(\sqrt{5}\right)+\left(\sqrt{5}\right)^2}\)
Tính:
\(A=2\sqrt{\left(-3\right)^6}+2\sqrt{\left(-2\right)^4}-4\sqrt{\left(-2\right)^6}\)
\(B=\sqrt{\left(\sqrt{2}-2\right)^2}+\sqrt{\left(\sqrt{2}-3\right)^2}\)
\(C=\sqrt{\left(3-\sqrt{3}\right)^2}-\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(D=\sqrt{\left(5+\sqrt{6}\right)^2}-\sqrt{\left(\sqrt{6}-5\right)^2}\)
\(E=\sqrt{17^2-8^2}-\sqrt{3^2+4^2}\)
\(A=2.\left|\left(-3\right)\right|^3+2.\left(-2\right)^2-4\left|\left(-2\right)^3\right|\)
\(=54+8-32=30\)
\(B=\left|\sqrt{2}-2\right|+\left|\sqrt{2}-3\right|=2-\sqrt{2}+3-\sqrt{2}\)
\(=5-2\sqrt{2}\)
\(C=\left|3-\sqrt{3}\right|-\left|1+\sqrt{3}\right|=3-\sqrt{3}-1-\sqrt{3}\)
\(=2-2\sqrt{3}\)
\(D=\left|5+\sqrt{6}\right|-\left|\sqrt{6}-5\right|=5+\sqrt{6}-5+\sqrt{6}\)
\(=2\sqrt{6}\)
\(E=\sqrt{15^2}-\sqrt{5^2}=15-5=10\)
`A=2sqrt{(-3)^6}+2sqrt{(-2)^4}-4sqrt{(-2)^6}=2|(-3)^3|+2|(-2)^2|-4|(-2)^3|=54+8-32=30` $\\$ `B=sqrt{(sqrt2-2)^2}+sqrt{(sqrt2-3)^2}=2-sqrt2+3-sqrt2=5-2sqrt2` $\\$ `C=sqrt{(3-sqrt3)^2}-sqrt{(1+sqrt3)^2}=3-sqrt3-sqrt3-1=2-2sqrt3` $\\$ `D=sqrt{(5+sqrt6)^2}-sqrt{(sqrt6-sqrt5)^2}=5+sqrt6-5+sqrt6=2sqrt6` $\\$ `E=sqrt{17^2-8^2}-sqrt{3^2+4^2}=sqrt{289-64}-sqrt{9+16}=sqrt(225)-sqrt{25}=15-5=10`
a)\(\sqrt{\left(2\sqrt{2}-3\right)^2+\sqrt{15}}\)
b)\(\sqrt{\left(\sqrt{10}-3\right)}^2+\sqrt{\left(\sqrt{10}-4\right)^2}\)
c)\(11+6\sqrt{2}=\left(3+\sqrt{2}\right)^2\)
d)\(\sqrt{11}+6\sqrt{2}+\sqrt{11-6\sqrt{2}=6}\)
b: =căn 10-3+4-căn 10=1
a: \(=\sqrt{11-4\sqrt{6}+\sqrt{15}}\)
Bài 2:
a) \(\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3+2\sqrt{2}\right)^2}\) b) \(\sqrt{\left(5-2\sqrt{6}\right)^2}-\sqrt{\left(5+2\sqrt{6}\right)^2}\)
c) \(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\) d) \(\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-5\right)^2}\)
e) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)^2}\) f) \(\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
Hộ mk vs ạ
a)\(\sqrt{\left(3-2\sqrt{2}\right)^2}\) + \(\sqrt{\left(3+2\sqrt{2}\right)^2}\) = \(\left(3-2\sqrt{2}\right)+\left(3+2\sqrt{2}\right)\) =\(3-2\sqrt{2}+3+2\sqrt{2}\) =\(6\)
b)\(\sqrt{\left(5-2\sqrt{6}\right)^2}-\sqrt{\left(5+2\sqrt{6}\right)^2}=\left(5-2\sqrt{6}\right)-\left(5+2\sqrt{6}\right)=5-2\sqrt{6}-5-2\sqrt{6}\)\(=-4\sqrt{6}\)
c)\(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}=\sqrt{5}-\sqrt{2}+\sqrt{5}+\sqrt{2}=2\sqrt{5}\)
d)\(\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-5\right)^2}=\sqrt{2}+1-5+\sqrt{2}=2\sqrt{2}-4\)
e)\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)^2}=2-\sqrt{3}+\sqrt{3}-1=1\)
f)\(\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}=3+\sqrt{2}-\sqrt{2}+1=4\)
a) \(\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3+2\sqrt{2}\right)^2}\)
\(=3-2\sqrt{2}+3+2\sqrt{2}\)
=6
c) Ta có: \(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)
\(=\sqrt{5}-\sqrt{2}+\sqrt{5}+\sqrt{2}\)
\(=2\sqrt{5}\)
\(\sqrt{\left(11-6\sqrt{2}\right)^2}+\sqrt{\left(11+6\sqrt{2}\right)^2}\)
\(\sqrt{\left(10-4\sqrt{6}\right)^2}-\sqrt{\left(10+4\sqrt{6}\right)^2}\)
\(\sqrt{\left(4-\sqrt{5}\right)^2}+\sqrt{\left(1-\sqrt{5}\right)^2}\)
\(\sqrt{\left(7+\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
Rút gọn :
\(\dfrac{\sqrt{x+\sqrt{4\left(x-1\right)}}-\sqrt{x-\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(\sqrt{x-1}-\dfrac{1}{\sqrt{x-1}}\right)\)
b)\(\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
c)\(\left(\sqrt{5}+1\right)\left(\sqrt{7}+1\right)\left(\sqrt{35}+1\right)\left(34-4\sqrt{7}-6\sqrt{5}\right)\)
d) \(\left(\sqrt{7}+1\right)\left(2\sqrt{2}-1\right)\left(2\sqrt{14}-1\right)\left(55+12\sqrt{2}-7\sqrt{7}\right)\)
e)\(\left(3\sqrt{2}+1\right)\left(2\sqrt{3}+1\right)\left(6\sqrt{6}+1\right)\left(215-34\sqrt{3}-33\sqrt{2}\right)\)
\(x^3=\left(\sqrt[3]{5+2\sqrt{6}}+\sqrt[3]{5-2\sqrt{6}}\right)^3=\sqrt[3]{5+2\sqrt{6}}^3\)
\(+3\sqrt[3]{\left(5+2\sqrt{6}\right)^2}.\sqrt[3]{5-2\sqrt{6}}+3\sqrt[3]{5+2\sqrt{6}}.\sqrt[3]{\left(5-2\sqrt{6}\right)^2}+\sqrt[3]{5-2\sqrt{6}}^3\)
\(=5+2\sqrt{6}+3\sqrt[3]{\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)}.\sqrt[3]{5+2\sqrt{6}}\)
\(+3\sqrt[3]{\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)}.\sqrt[3]{5-2\sqrt{6}}+5-2\sqrt{6}\)
\(=5+5+3\sqrt[3]{\left(25-4.6\right)}.\sqrt[3]{5+2\sqrt{6}}+3\sqrt[3]{\left(25-4.6\right)}.\sqrt[3]{5-2\sqrt{6}}\)
\(=10+ 3\sqrt[3]{5+2\sqrt{6}}+3\sqrt[3]{5-2\sqrt{6}}\)
p/s : có bạn hỏi nên mình đăng , các bạn đừng report nhé
Bài 1: Rút gọn
\(3\sqrt{9a^6}-6a^3\) (với mọi a)
\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(1-3x\right)^2}\) (Với \(\dfrac{1}{3}\) < x ≤ 1 )
\(\sqrt{2-\sqrt{3}}.\left(\sqrt{6}+\sqrt{2}\right)\)
\(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}\)
\(\sqrt{23-8\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\) (với 1<x<2)
\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\) (với x ≥4)
\(3\sqrt{9a^6}-6a^3=3\left|3a^3\right|-6a^3\)
Xét \(a\ge0\Rightarrow\) biểu thức \(=9a^3-6a^3=3a^3\)
Xét \(a< 0\Rightarrow\) biểu thức \(=-9a^3-6a^3=-15a^3\)
\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(1-3x\right)^2}=\left|x-1\right|+\left|1-3x\right|\)
\(=1-x+3x-1\left(\dfrac{1}{3}< x\le1\right)=2x\)
\(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)=\sqrt{2-\sqrt{3}}.\sqrt{2}\left(\sqrt{3}+1\right)=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}+1\right)\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=2\)
\(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{2}.\sqrt{3+\sqrt{5}}\)
\(=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{6+2\sqrt{5}}=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=\left(\sqrt{5}+1\right)^2\left(\sqrt{5}-1\right)^2=4^2=16\)
\(\sqrt{23-8\sqrt{7}}+\sqrt{8-2\sqrt{7}}=\sqrt{\left(2\sqrt{7}-4\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}\)
\(=2\sqrt{7}-4+\sqrt{7}-1=3\sqrt{7}-5\)
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
\(=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|\)
\(=\sqrt{x-1}+1+1-\sqrt{x-1}=2\)
\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)
\(=\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)
\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}=\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|\)
Xét \(x\ge8\Rightarrow\sqrt{x-4}\ge2\Rightarrow\)biểu thức \(=\sqrt{x-4}+2+\sqrt{x-4}-2\)
\(=2\sqrt{x-4}\)
Xét \(x< 8\Rightarrow\sqrt{x-4}< 2\Rightarrow\) biểu thức \(=\sqrt{x-4}+2+2-\sqrt{x-4}=4\)
\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+3\right)\)
\(0.1\cdot\sqrt{\left(-3\right)^2}\cdot\left[6\sqrt{\left(\frac{1}{3}\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\right]^2\)
\(\left(\frac{3\sqrt{2}+\sqrt{6}}{\sqrt{12}+2}-\frac{\sqrt{54}}{3}\right)\cdot\frac{2}{\sqrt{6}}\)
\(\left(\frac{3+2\sqrt{3}}{\sqrt{3}+2}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\right)\div\left(1\div\frac{1}{\sqrt{2}+\sqrt{3}}\right)\)
\(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}\)
a) \(\sqrt{\left(2\sqrt{6}-4\right)^2}+\sqrt{15-6\sqrt{6}}\)
b) \(\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{19+2\sqrt{18}}\)
c) \(\sqrt{9+4\sqrt{5}}-\sqrt{\left(1-\sqrt{5}^2\right)}\)
\(a,=2\sqrt{6}-4+\sqrt{\left(3-\sqrt{6}\right)^2}=2\sqrt{6}-4+3-\sqrt{6}=\sqrt{6}-1\\ b,=3-2\sqrt{2}+\sqrt{\left(3\sqrt{2}+1\right)^2}=3-2\sqrt{2}+3\sqrt{2}+1=4+\sqrt{2}\\ c,=\sqrt{\left(\sqrt{5}+2\right)^2}-\left(\sqrt{5}-1\right)=\sqrt{5}+2-\sqrt{5}+1=3\)
a) \(=2\sqrt{6}-4+\sqrt{\left(3-\sqrt{6}\right)^2}=2\sqrt{6}-4+3-\sqrt{6}=-1+\sqrt{6}\)
b) \(=\left|3-2\sqrt{2}\right|+\sqrt{\left(3\sqrt{2}+1\right)^2}=3-2\sqrt{2}+3\sqrt{2}+1=4+\sqrt{2}\)
c) \(=\sqrt{\left(\sqrt{5}+2\right)^2}-\left|1-\sqrt{5}\right|=\sqrt{5}+2+1-\sqrt{5}=3\)
a)\(\sqrt{\left(2\sqrt{6}-4\right)^2}+\sqrt{\left(3-\sqrt{6}\right)^2}\)=2\(\sqrt{6}-4+3-\sqrt{6}\)=\(\sqrt{6}-1\)
b)\(\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(1+\sqrt{18}\right)^2}\)=3-2\(\sqrt{2}+1+3\sqrt{2}\)=4+\(\sqrt{2}\)
c)\(\sqrt{\left(2+\sqrt{5}\right)^2}+\sqrt{\left(1-\sqrt{5}\right)^2}\)=2+\(\sqrt{5}+1-\sqrt{5}\)=3