Tìm x :
2x - 6 = x + 4
Tìm x biết : a) (x+2)(x²-2x+4)-x(x²-2)=15 b) (x-4)² - (x-2)(x+2)= 6 c) x⁴-2x³+x²-2x=0
a) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)
\(\Leftrightarrow\left(x^3+2^3\right)-\left(x^3-2x\right)=15\)
\(\Leftrightarrow x^3+8-x^3+2x=15\)
\(\Leftrightarrow2x+8=15\)
\(\Leftrightarrow2x=15-8\)
\(\Leftrightarrow2x=7\)
\(\Leftrightarrow x=\dfrac{7}{2}\)
b) \(\left(x-4\right)^2-\left(x+2\right)\left(x-2\right)=6\)
\(\Leftrightarrow x^2-8x+16-\left(x^2-4\right)=6\)
\(\Leftrightarrow x^2-8x+16-x^2+4=6\)
\(\Leftrightarrow-8x+20=6\)
\(\Leftrightarrow-8x=6-20\)
\(\Leftrightarrow-8x=-14\)
\(\Leftrightarrow x=\dfrac{7}{4}\)
c) \(x^4-2x^3+x^2-2x=0\)
\(\Leftrightarrow x^3\left(x-2\right)+x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x^3+x\right)\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x^2+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
`(x+2)(x^2 -2x+4) -x(x^2-2)=15`
`<=> x^3 +8 - x^3 + 2x-15=0`
`<=> 2x-7=0`
`<=> 2x=7`
`<=>x=7/2`
__
`(x-4)^2 -(x-2)(x+2)=6`
`<=>x^2 - 8x+16- x^2 +4-6=0`
`<=> -8x+14=0`
`<=> -8x=-14`
`<=>x=14/8= 7/4`
__
`x^4 -2x^3 +x^2-2x=0`
`<=>x(x^3-2x^2+x-2)=0`
`<=> x(x^3+x-2x^2-2)=0`
`<=>x(x(x^2+1) -2(x^2+1))=0`
`<=> x(x^2+1)(x-2)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+1=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
tìm x , biết
a) 17/6- x( x-7/6)= 7/4
b) 3/35 - ( 3/5-x)= 2/7
tìm x thuộc Z , biết
3/4-5/6 < x/12 < 1 -( 2/3-1/4)
tìm x biết
a ) 2x-3=x + 1/2
b) 4x- ( x+ 1/2) = 2x - ( 1/2 - 5 )
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
Bài 3:
a) Ta có: \(2x-3=x+\dfrac{1}{2}\)
\(\Leftrightarrow2x-x=\dfrac{1}{2}+3\)
\(\Leftrightarrow x=\dfrac{7}{2}\)
b) Ta có: \(4x-\left(x+\dfrac{1}{2}\right)=2x-\left(\dfrac{1}{2}-5\right)\)
\(\Leftrightarrow3x-\dfrac{1}{2}-2x+\dfrac{1}{2}-5=0\)
\(\Leftrightarrow x=5\)
|2x+6|+ |x+2| + |2x+2| =4 tìm x
\(\left|2x+6\right|+\left|x+2\right|+\left|2x+2\right|=4\)
\(\Leftrightarrow2\left|x+3\right|+\left|x+2\right|+2\left|x+1\right|=4\) (1)
+, Với \(x< -3\) thì (1) trờ thành:
\(2(-x-3)+(-x-2)+2(-x-1)=4\)
\(\Rightarrow-2x-6-x-2-2x-2=4\)
\(\Rightarrow-5x-10=4\)
\(\Rightarrow-5x=14\)
\(\Rightarrow x=-\dfrac{14}{5}\left(ktm\right)\)
+, Với \(-3\le x< -2\), thì (1) trở thành:
\(2\left(x+3\right)+\left(-x-2\right)+2\left(-x-1\right)=4\)
\(\Rightarrow2x+6-x-2-2x-2=4\)
\(\Rightarrow-x+2=4\)
\(\Rightarrow x=-2\left(ktm\right)\)
+, Với \(-2\le x< -1\), thì (1) trở thành:
\(2\left(x+3\right)+\left(x+2\right)+2\left(-x-1\right)=4\)
\(\Rightarrow2x+6+x+2-2x-2=4\)
\(\Rightarrow x+6=4\)
\(\Rightarrow x=-2\left(tm\right)\)
+, Với \(x\ge-1\), thì (1) trở thành:
\(2\left(x+3\right)+\left(x+2\right)+2\left(x+1\right)=4\)
\(\Rightarrow2x+6+x+2+2x+2=4\)
\(\Rightarrow5x+10=4\)
\(\Rightarrow5x=-6\)
\(\Rightarrow x=-\dfrac{6}{5}\left(ktm\right)\)
Vậy \(x=-2\)
#Urushi☕
|2x+6|+ |x+2| + |2x+2| =4
=>2x+6+ x+2 + 2x+2 =4 hoặc 2x+6+ x+2 + 2x+2 =-4
=>2x+6+ x+2 + 2x+2 =4 2x+6+ x+2 + 2x+2 =-4
=>(2x+x+2x)+(6+2+2)=4 (2x+x+2x)+(6+2+2)=-4
=> 5x+10=4 5x+10=-4
=>5x=4-10 5x=(-4)-10
=>5x=-6 5x=-14
=>x=(-6):5 x= (-14):5
=>x=-6/5 x=-14/5
vậy x∈{-6,5;-14/5}
|2x+6|+ |x+2| + |2x+2| =4 tìm x
|2x+6|+|x+2|+|2x+2|=4
=>2|x+3|+|x+2|+2|x+1|=4(1)
TH1: x<-3
(1) sẽ trở thành:
2(-x-3)+(-x-2)+2(-x-1)=4
=>-2x-6-x-2-2x-2=4
=>-5x-10=4
=>-5x=14
=>x=-14/5(loại)
TH2: -3<=x<-2
Phương trình (1) sẽ là:
2(x+3)+(-x-2)-2x-2=4
=>2x+6-x-2-2x-2=4
=>-x+2=4
=>-x=2
=>x=-2(loại)
TH3: -2<=x<-1
Phương trình (1) sẽ là:
2x+6+x+2-2x-2=4
=>x+6=4
=>x=-2(nhận)
Th4: x>=-1
Phương trình (1) sẽ trở thành:
2x+6+x+2+2x+2=4
=>5x+10=4
=>5x=-6
=>x=-6/5(loại)
bài 7 tìm x
1,x(x+3)-5(x+3)=0 2,5x(x-1)=x-1
3,(x+1)=(x+1)\(^2\) 4,x(2x-3)-2(3-2x)=0
5,\(\left(x-2\right)^2-4=0\) 6,\(36x^2=49\)
7,\(2x\left(x-6\right)-x+6=0\) 8,\(3x\left(2x-1\right)-24x+12=0\)
9,\(x^2-6x+8=0\) 10,\(x^2+2x-15=0\)
1: =>(x+3)(x-5)=0
=>x=5 hoặc x=-3
2: =>(x-1)(5x-1)=0
=>x=1/5 hoặc x=1
5: =>(x-4)*x=0
=>x=0 hoặc x=4
10: =>(x+5)(x-3)=0
=>x=3 hoặc x=-5
9: =>(x-2)(x-4)=0
=>x=2 hoặc x=4
7: =>(x-6)(2x-1)=0
=>x=1/2 hoặc x=6
8: =>(2x-1)(3x-12)=0
=>x=4 hoặc x=1/2
Câu 4 : Tìm x, biết.
a) 2^x.4 = 128 b) (2x + 1)^3 = 125 c) 2x – 2^6 = 6 d) 49.7^x = 2401\(a,2^x.4=128\\2^x.2^2=2^7\\ 2^x=\dfrac{2^7}{2^2}=2^{7-2}=2^5\\ Vậy:x=5\\ ----\\ b,\left(2x+1\right)^3=125=5^3\\ \Rightarrow 2x+1=5\\ 2x=5-1=4\\ x=\dfrac{4}{2}=2\\ ----\\ c,2x-2^6=6\\ 2x=6+2^6=6+64\\ 2x=70\\ x=\dfrac{70}{2}=35\\ ----\\ d,49.7^x=2401\\ 7^x=\dfrac{2401}{49}=49=7^2\\ Vậy:x=2\)
Tìm đkxđ của: 1, 3x/ 4x-8 2, 2x/ x²-9 3, 6/x³+1 4, 6x²/x²-2x+1 5, x-2/x²+3 6, 2x/x²+3+2
1) \(\dfrac{3x}{4x-8}\)
\(ĐKXĐ:4x-8\ne0\Leftrightarrow x\ne2\)
2) \(\dfrac{2x}{x^2-9}\)
\(ĐKXĐ:x^2-9\ne0\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ne3\\x\ne-3\end{matrix}\right.\)
3) \(\dfrac{6}{x^3+1}=\dfrac{6}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(ĐKXĐ:\)\(x+1\ne0\Leftrightarrow x\ne-1\)
(do \(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\))
4) \(\dfrac{6x^2}{x^2-2x+1}=\dfrac{6x^2}{\left(x-1\right)^2}\)
\(ĐKXĐ:x-1\ne0\Leftrightarrow x\ne1\)
5) \(\dfrac{x-2}{x^2+3}\)
Do \(x^2+3>0\forall x\in R\)
Vậy biểu thức trên xác định với mọi x
6) \(\dfrac{2x}{x^2+3x+2}=\dfrac{2x}{\left(x+1\right)\left(x+2\right)}\)
\(ĐKXĐ:\)\(\left\{{}\begin{matrix}x+1\ne0\\x+2\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne-2\end{matrix}\right.\)
6 .(4-x) -4.(x-1)=2x +40 tìm x
=>24-6x-4x+4=2x+40
=>-10x+28=2x+40
=>-12x=12
=>x=-1
\(6\left(4-x\right)-4\left(x-1\right)=2x+40\)
\(\Rightarrow24-6x-4x+4=2x+40\)
\(\Rightarrow-6x-4x-2x=40-24-4\)
\(\Rightarrow-12=12\)
\(\Rightarrow x=\dfrac{12}{-12}\)
\(\Rightarrow x=-1\)
Tìm x 2.(5x-8)-3(4x-5)=4(3x-4)+11 3 . 2(x³-1)-2x²(x+2x⁴)+(4x⁵+4)x=6
`2//(5x-8)-3(4x-5)=4(3x-4)`
`<=>5x-8-12x+15=12x-16`
`<=>-19x=-23`
`<=>x=23/19` Vậy `x=23/19`
`3//2(x^3-1)-2x^2(x+2x^4)+(4x^5+4)x=6`
`<=>2x^3-2-2x^3-4x^6+4x^6+4x=6`
`<=>4x=8`
`<=>x=2` Vậy `x=2`
tìm số nguyên x
5/x+1+4/x+1=3/-13
-x+2+2x+3+x+1/4+2x+1/6=8/3
3/2x+1+10/4x+2-6/6x+2=12/26
giúp mình mik đang vội]
\(\dfrac{5}{x}+1+\dfrac{4}{x}+1=\dfrac{3}{-13}\\ \Rightarrow\dfrac{9}{x}+2=-\dfrac{3}{13}\\ \Rightarrow\dfrac{9}{x}=-\dfrac{59}{13}\\ \Rightarrow x=-\dfrac{207}{59}\)
a. \(\dfrac{5}{x+1}+\dfrac{4}{x+1}=\dfrac{-3}{13}\)
ĐKXĐ: x ≠ -1
⇔ \(\dfrac{65}{13\left(x+1\right)}+\dfrac{52}{13\left(x+1\right)}=\dfrac{-3\left(x+1\right)}{13\left(x+1\right)}\)
⇔ 65 + 52 = -3(x + 1)
⇔ 117 = -3x - 3
⇔ 117 + 3 = -3x
⇔ 120 = -3x
⇔ x = \(\dfrac{120}{-3}=-40\) (TM)
b. -x + 2 + 2x + 3 + x + \(\dfrac{1}{4}\) + 2x + \(\dfrac{1}{6}\) = \(\dfrac{8}{3}\)
⇔ -x + 2x + x + 2x = \(\dfrac{8}{3}-\dfrac{1}{6}-\dfrac{1}{4}-3-2\)
⇔ 4x = -2,75
⇔ x = \(\dfrac{-2,75}{4}=\dfrac{-11}{16}\)
c. \(\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+2}\) = \(\dfrac{12}{26}\)
⇔ \(\dfrac{3}{2x+1}+\dfrac{10}{2\left(2x+1\right)}-\dfrac{6}{2\left(3x+1\right)}=\dfrac{12}{26}\)
⇔ \(\dfrac{312\left(3x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\) + \(\dfrac{520\left(3x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\) - \(\dfrac{312\left(2x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\)
= \(\dfrac{48\left(2x+1\right)\left(3x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\)
⇔ 312(3x +1) + 520(3x + 1) - 312(2x + 1) = 48(2x + 1)(3x + 1)
⇔ 936x + 312 + 1560x + 520 - 624x - 312 = (96x + 48)(3x + 1)
⇔ 936x + 312 + 1560x + 520 - 624x - 312 = 288x2 + 96x + 144x + 48
⇔ 936x + 1560x - 624x - 96x - 144x - 288x2 = 48 - 312 - 520 + 312
⇔ 1632x - 288x2 = -472
⇔ -288x2 + 1632x + 472 = 0 (Tự giải tiếp, dùng phương pháp tách hạng tử)
⇔ x = 5,942459684 \(\approx\) 6
c: Ta có: \(\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+3}=\dfrac{12}{26}\)
\(\Leftrightarrow\dfrac{3}{2x+1}+\dfrac{5}{2x+1}-\dfrac{2}{2x+1}=\dfrac{6}{13}\)
\(\Leftrightarrow2x+1=13\)
hay x=6