Cho a,b là các số thực sao cho với mọi c > 0 ta có a < b+c
Chứng minh : \(a\le b\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có\(\Sigma\left(b+c\right)\sqrt[k]{\dfrac{bc+1}{a^2+1}}\ge6\)
tìm m là số thực nhỏ nhất sao cho \(\text{m+c≤(m+a)(m+b)}\) với mọi \(a\le b\le c\) là độ dài 3 cạnh của 1 tam giác
Cho a + b + c = 0. C/m: ab + ac + bc ≤ 0 với mọi số thực a, b, c
Cho các số thực: 0\(\le\)a\(\le\)1; 0\(\le\)b\(\le\)1; 0\(\le\)c\(\le\)1 thoả mãn:
\(a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}=\dfrac{3}{2}\)
Chứng minh: \(a^2+b^2+c^2=\dfrac{3}{2}\)
Áp dụng BĐT cosi:
\(a\sqrt{1-b^2}=\sqrt{a^2\left(1-b^2\right)}\le\dfrac{a^2+1-b^2}{2}\)
Tương tự cx có: \(b\sqrt{1-c^2}\le\dfrac{b^2+1-c^2}{2}\)
\(c\sqrt{1-a^2}\le\dfrac{c^2+1-a^2}{2}\)
Cộng vế với vế \(\Rightarrow VT\le\dfrac{3}{2}\)
Dấu = xảy ra <=> \(\left\{{}\begin{matrix}a^2=1-b^2\\b^2=1-c^2\\c^2=1-a^2\end{matrix}\right.\) \(\Leftrightarrow a^2+b^2+c^2=3-\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow a^2+b^2+c^2=\dfrac{3}{2}\) (đpcm)
Cho a,b là số hữu tỉ sao cho với mọi số hữu tỉ c>0 ta luôn có a<b+c. Chứng minh rằng a bé hon hoặc bằng b. Giúp mik nhé, mai phải nộp rồi...
Xét các số thực a,b,c với \(b\ne a+c\) sao cho PT bậc 2 \(ax^2+bx+c=0\) có 2 nghiệm thực m,n thỏa mãn \(0\le m,n\le1\). Tìm GTLN và GTNN của biểu thức
\(M=\dfrac{\left(a-b\right)\left(2a-c\right)}{a\left(a-b+c\right)}\)
Em tham khảo ở đây:
Max thì đơn giản thôi em:
Do \(0\le m;n\le1\Rightarrow0< 2-mn\le2\)
\(\Rightarrow M=\dfrac{\left(2-mn\right)\left(m+n+1\right)}{mn+m+n+1}\le\dfrac{2\left(m+n+1\right)}{mn+m+n+1}\le\dfrac{2\left(m+n+1\right)}{m+n+1}=2\)
\(M_{max}=2\) khi \(mn=0\)
Cho a, b, c là các số thực dương thỏa mãn \(a^2+b^2+c^2=1\). Chứng minh rằng: \(\dfrac{1}{a^2+b^2}+\dfrac{1}{c^2+a^2}+\dfrac{1}{a^2+b^2}\le\dfrac{a^3+b^3+c^3}{2abc}+3\)
Mọi người giúp em với ạ, chiều em phải nộp rồi ạ T.T
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có
\(\left(b+c\right)\sqrt[k]{\frac{bc+1}{a^2+1}}+\left(a+c\right)\sqrt[k]{\frac{ac+1}{b^2+1}}+\left(a+b\right)\sqrt[k]{\frac{ab+1}{c^2+1}}\ge6\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có....
.
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có.
Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x
Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.
Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?
Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Gấp các bn oi
Tìm 2 số tự nhiên liên tiếp có tích bằng
a) 3306 ; b) 7656 ; c) 1806 ; d) 5402