Cho tam giác ABC có ba góc nhọn , vẽ đường AD và BE ,gọi H là Trực tâm của tam giác.
a)C/m \(\tan A\times\tan C=\frac{AD}{HD}\)
b)C/m \(DH\times DA\le\frac{BC^2}{4}\)
c)Gọi a,b,c lần lượt là độ dài các cạnh BC,AC,AB của tam giác ABC .C/m \(\sin\frac{A}{2}\le\frac{A}{2\sqrt{ab}}\)
Cho a,b,c là độ dài ba cạnh của một tam giác có chu vi là 3:CMR: \(\text{(a+b-c)(b+c-a)(c+a-b) }\le a^2b^2c^2\)
Cho tam giác ABC đều đường cao AH. Một điểm M bất kì thuộc BC. Kẻ ME, MF vuông góc với AB, AC. I là trung điểm của AM.
a) tứ giác EHIF là hình gì
b) G là trọng tâm của tam giác ABC. Chứng minh EF, HI, MG đồng quy
c) Tìm điểm M trên cạnh BC sao cho độ dài È đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất đó khi cạnh của tam giác ABC đều là bằng a.
1.Cho tam giác ABCcó độ dài các cạnh là: a,b,c . Độ dài các đường trung tuyến tương ứng là ma, mb, mc.
CM: \(\frac{a}{m_a}+\frac{b}{m_b}+\frac{c}{m_c}\ge2\sqrt{3}\)
2. Tìm MaxP= sinP + cosP
Với P là số đo góc nhọn trong tam giác ABC vuông .
3.Cho tam giác ABC có chu vi bằng 3 cm, góc A=60.Tính giá trị lớn nhất của diện tích tam gIác ABC
4.Cho (O) và một đểm A cố định nằm ngoài đường tròn .Xét đường kính BC. Tìm vị trí đường kính BC để AB+AC đạt giá trị nhỏ nhất
Cho tam giác đều ABC, đường cao AH. M là một điểm bất kì trên cạnh BC. Vẽ MP vuông góc với AB.Gọi O là trung điểm của AM.
a, CM A,P,M,H,Q cùng nằm trên cùng 1 đường tròn
b,Tứ giác OPHQ là hình gì.CM
c,Xác định vị trí của M trên cạnh BC để độ dài PQ nhỏ nhất.Tính giá trị nhỏ nhất đó nếu cạnh tam giác đều là a
2) cho tam giác ABC có độ dài các cạnh là a;b;c nội tiếp đường tròn tâm R .gọi x;y;z là khoảng cách từ điểm M thuộc miền trong của tam giác ABC đến các cạnh AB;AC;BC . Chứng minh \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{\frac{a^2+b^2+c^2}{2R}}\)
Cho các số thực dương a,b,c thỏa mãn điều kiện \(a+b+c\le\frac{3}{2}\).Tìm giá trị nhỏ nhất của biểu thức \(M=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Chứng minh rằng nếu a và b là độ dài 2 cạnh của một tam giác vuông với độ dài cạnh huyền là c thì \(a+b\le c\sqrt{2}\)
Cho a,b,c là độ dài 3 cạnh của 1 tam giác . CM : \(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{a+b+c}{2abc}\)