Cho 3 phân thức: \(\dfrac{a-b}{ab+1};\dfrac{b-c}{bc+1};\dfrac{c-a}{ca+1}\). CMR: Tổng của 3 phân thức này bằng tích của chúng
Cho biết: \(\dfrac{a+b-c}{ab}-\dfrac{b+c-a}{bc}-\dfrac{a+c-b}{ac}=0\). CMR trong 3 phân thức ở vế trái, có ít nhất một phân thức bằng 0
Thực hiện các phép cộng, trừ phân thức sau:
a) \(\dfrac{{a - 1}}{{a + 1}} + \dfrac{{3 - a}}{{a + 1}}\) b) \(\dfrac{b}{{a - b}} + \dfrac{a}{{b - a}}\) c) \(\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}} - \dfrac{{{{\left( {a - b} \right)}^2}}}{{ab}}\)
a) \(\dfrac{a-1}{a+1}+\dfrac{3-a}{a+1}\)
\(=\dfrac{a-1+3-a}{a+1}\)
\(=\dfrac{2}{a+1}\)
b) \(\dfrac{b}{a-b}+\dfrac{a}{b-a}\)
\(=\dfrac{b}{a-b}+\dfrac{-a}{a-b}\)
\(=\dfrac{b-a}{a-b}\)
\(=-1\)
c) \(\dfrac{\left(a+b\right)^2}{ab}-\dfrac{\left(a-b\right)^2}{ab}\)
\(=\dfrac{\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)+\left(a-b\right)\right]}{ab}\)
\(=\dfrac{4ab}{ab}\)
\(=4\)
`a, (a-1)/(a+1) + (3-a)/(a+1)`
`= (a-1+3-a)/(a+1)`
`=2/(a+1)`
`b, b/(a-b) + a/(b-a)`
`= b/(a-b) - a/(a-b)`
`= (b-a)/(a-b)`
`c, (a+b)^2/(ab) -(a-b)^2/(ab)`
`=(a^2+2ab+b^2-a^2+2ab-b^2)/(ab)`
`= (4ab)/(ab)`
Cho hai phân thức \(A = \dfrac{{a + b}}{{ab}}\) và \(B = \dfrac{{a - b}}{{{a^2}}}\)
a) Tìm đa thức thích hợp thay vào mỗi sau đây:
\(\dfrac{{a + b}}{{ab}}\) ; \(\dfrac{{a - b}}{{{a^2}}}\)
b) Sử dụng kết quả trên, tính \(A + B\) và \(A - B\)
a: \(\dfrac{a+b}{ab}=\dfrac{a\left(a+b\right)}{a^2b}=\dfrac{a^2+ab}{a^2b}\)
\(\dfrac{a-b}{a^2}=\dfrac{ab-b^2}{a^2b}\)
b: \(A+B=\dfrac{a^2+ab+ab-b^2}{a^2b}=\dfrac{a^2+2ab-b^2}{a^2b}\)
\(A-B=\dfrac{a^2+ab-ab+b^2}{a^2b}=\dfrac{a^2+b^2}{a^2b}\)
Cho biểu thức I = \(\left(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{3\sqrt{ab}}{a\sqrt{a}+b\sqrt{b}}\right)\).\(\left[\left(\dfrac{1}{\sqrt{a}-\sqrt{b}}+\dfrac{3\sqrt{ab}}{a\sqrt{a}-b\sqrt{b}}\right):\dfrac{a-b}{a+\sqrt{ab}+b}\right]\)
Rút gọn I
a) Tính giá trị của I với a = 16, b = 4
\(I=\dfrac{a-\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\cdot\left[\left(\dfrac{a+\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\right)\cdot\dfrac{a+\sqrt{ab}+b}{a-b}\right]\)
\(=\dfrac{a+2\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\cdot\left(\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\cdot\dfrac{a+\sqrt{ab}+b}{a-b}\right)\)
\(=\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}\cdot\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a-b\right)}\)
\(=\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)^2\cdot\left(a-\sqrt{ab}+b\right)}\)
Khi a=16 và b=4 thì \(I=\dfrac{16+4+4\cdot\sqrt{16\cdot4}}{\left(4-2\right)^2\cdot\left(16-\sqrt{16\cdot4}+4\right)}=\dfrac{20+4\cdot8}{4\cdot12}\)
\(=\dfrac{20+32}{48}=\dfrac{52}{48}=\dfrac{13}{12}\)
a) Tìm tất cả các số nguyên n sao cho A = \(\dfrac{1-6n}{2n-3}\) là một số nguyên
b) Cho các phân số: \(\dfrac{ab}{a+2b}=\dfrac{3}{2},\dfrac{bc}{b+2c}=\dfrac{4}{3},\dfrac{ca}{c+2a}=3\)
Rút gọn phân số T = \(\dfrac{abc}{ab+bc+ca}\)
\(a,A=\dfrac{-3\left(2n-3\right)-8}{2n-3}=-3-\dfrac{8}{2n-3}\in Z\\ \Leftrightarrow2n-3\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\\ \Leftrightarrow n\in\left\{1;2\right\}\left(n\in Z\right)\)
\(b,\dfrac{ab}{a+2b}=\dfrac{3}{2}\Leftrightarrow\dfrac{a+2b}{ab}=\dfrac{2}{3}\Leftrightarrow\dfrac{1}{b}+\dfrac{2}{a}=\dfrac{2}{3}\\ \dfrac{bc}{b+2c}=\dfrac{4}{3}\Leftrightarrow\dfrac{b+2c}{bc}=\dfrac{3}{4}\Leftrightarrow\dfrac{1}{c}+\dfrac{2}{b}=\dfrac{3}{4}\\ \dfrac{ca}{c+2a}=3\Leftrightarrow\dfrac{c+2a}{ca}=\dfrac{1}{3}\Leftrightarrow\dfrac{1}{a}+\dfrac{2}{c}=\dfrac{1}{3}\)
Cộng vế theo vế \(\Leftrightarrow\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}=\dfrac{2}{3}+\dfrac{3}{4}+\dfrac{1}{3}=\dfrac{7}{4}\)
\(\Leftrightarrow3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{7}{4}\\ \Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{7}{12}\\ \Leftrightarrow\dfrac{ab+bc+ca}{abc}=\dfrac{7}{12}\\ \Leftrightarrow T=\dfrac{12}{7}\)
1. Cho \(x,y,z>0\) và \(x^3+y^2+z=2\sqrt{3}+1\). Tìm GTNN của biểu thức \(P=\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\)
2. Cho \(a,b>0\). Tìm GTNN của biểu thức \(P=\dfrac{8}{7a+4b+4\sqrt{ab}}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
1) Áp dụng bđt Cauchy cho 3 số dương ta có
\(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)
\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)
\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)
Cộng (1);(2);(3) theo vế ta được
\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)
\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)
\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)
2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)
Dấu"=" khi a = 4b
nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)
Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
Đặt \(\sqrt{a+b}=t>0\) ta được
\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)
\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)
Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)
nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)
khi đó a + b = 1
mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
a, Tìm tất cả các số tự nhiên n sao cho số A=\(\dfrac{1-6n}{2n-3}\) là một số nguyên.
b,Cho các phân số \(\dfrac{ab}{a+2b}\)=\(\dfrac{3}{2}\); \(\dfrac{bc}{b+2c}\)=\(\dfrac{4}{3}\);\(\dfrac{ca}{c+2a}\)=3 . Rút gọn phân số : T=\(\dfrac{abc}{ab+bc+ca}\)
Cho các số thực dương a,b. Tìm GTLN của biểu thức: \(P=\left(a+b\right)\left(\dfrac{1}{a^3+b}+\dfrac{1}{b^3+a}\right)-\dfrac{1}{ab}\)
\(\left(a^3+b\right)\left(\dfrac{1}{a}+b\right)\ge\left(a+b\right)^2\Rightarrow\dfrac{1}{a^3+b}\le\dfrac{\dfrac{1}{a}+b}{\left(a+b\right)^2}=\dfrac{ab+1}{a\left(a+b\right)^2}\)
Tương tự: \(\dfrac{1}{b^3+a}\le\dfrac{ab+1}{b\left(a+b\right)^2}\)
\(\Rightarrow P\le\left(a+b\right)\left(\dfrac{ab+1}{a\left(a+b\right)^2}+\dfrac{ab+1}{b\left(a+b\right)^2}\right)-\dfrac{1}{ab}\)
\(P\le\dfrac{\left(ab+1\right)}{a+b}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-\dfrac{1}{ab}=\dfrac{ab+1}{ab}-\dfrac{1}{ab}=1\)
\(P_{max}=1\) khi \(a=b=1\)
Cho 3 số thực dương a, b, c thỏa mãn điều kiện a+b+c=3. Chứng minh bất đẳng thức sau \(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca} \geq \dfrac{3}{2}\)