\(\dfrac{5}{x^2+6}\) xác định khi ?
Cho các biểu thức A= \(\dfrac{X+2}{X+3}-\dfrac{5}{X^2+X-6}+\dfrac{1}{2-X}\)
a) Tìm điều kiện xác định của A
b) Rút gọn biểu thức A.
c) Tính giá trị của biểu thức A khi x = 3
a) ĐKXĐ: \(x\ne-3,x\ne2\)
b) \(A=\dfrac{\left(x-2\right)\left(x+2\right)-5-\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\dfrac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\dfrac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}=\dfrac{x-4}{x-2}\)
c) \(A=\dfrac{x-4}{x-2}=\dfrac{3-4}{3-2}=-1\)
Cho biểu thức A=(\(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\)) : (\(1-\dfrac{3-\sqrt{x}}{\sqrt{x}+1x}\))
1.Tìm điều kiện xác định của biểu thức A.
2.Rút gọn A.
3.Tính giá trị biểu thức A khi x = \(\dfrac{1}{6-2\sqrt{5}}\).
4.Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên.
5.Tìm giá trị của x để biểu thức A bằng -3.
6.Tìm giá trị của x để biểu thức A nhỏ hơn -1.
7.Tìm giá trị của x để biểu thức A lớn hơn \(\dfrac{-2}{\sqrt{x}+1}\)
1) ĐKXĐ: \(x\notin\left\{0;1\right\}\)
2) Ta có: \(A=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(1-\dfrac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\dfrac{x+\sqrt{x}+1-\left(x-\sqrt{x}+1\right)}{\sqrt{x}}:\dfrac{\sqrt{x}+1-3+\sqrt{x}}{\sqrt{x}+1}\)
\(=2\cdot\dfrac{\sqrt{x}+1}{2\sqrt{x}-2}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
tìm tập xác định của hàm số
a) y = \(\dfrac{2}{1-sinx}\)
b) y = \(\dfrac{5-x}{sinx}\) - \(\dfrac{1}{3x-6}\)
Tìm điều kiện xác định của các biểu thức sau
a) \(\sqrt{\dfrac{x-1}{5-x}}\) ; b) \(\dfrac{1}{\sqrt{x^2-5x+6}}\)
a: ĐKXĐ: \(\dfrac{x-1}{5-x}\ge0\)
\(\Leftrightarrow\dfrac{x-1}{x-5}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x-5< 0\end{matrix}\right.\Leftrightarrow1\le x< 5\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x>3\\x< 2\end{matrix}\right.\)
1. với giá trị nào của x thì các biểu thức sau đây xác định
a,\(\sqrt{\dfrac{2}{x^2}}\)
b,\(\sqrt{\dfrac{-5}{x^2+6}}\)
Cho biểu thức:
B = (\(\dfrac{x+1}{2x-2}\) + \(\dfrac{3}{x^2-1}\) - \(\dfrac{x+3}{2x+2}\)) . \(\dfrac{4x^2-4}{5}\)
a) Tìm điều kiện của x để giá trị của biểu thức được xác định.
b) C/m rằng: khi giá trị của x để giá trị của biểu thức được xác định.
tìm điều kiện xác định của các biểu thức
a)\(\dfrac{2x^2+7}{3x+21}\) b)\(\dfrac{x+5}{-12+6}\)
a) Để giá trị của \(\dfrac{2x^2+7}{3x+21}\) được xác định thì 3x + 21 \(\ne\) 0
=> 3(x+7) \(\ne\) 0
=> x+7 \(\ne\) 0
=> x \(\ne\) -7
Vậy để giá trị của biểu thức \(\dfrac{2x^2 +7}{3x+21}\) được xác định thì x \(\ne\) -7
b) Để giá trị của \(\dfrac{x+5}{-12+6}\) được xác định thì x \(\in\) R ( vì -12+6 \(\ne\) 0)
Tìm điều kiện xác định và rút gọn biểu thức:
D=\(\dfrac{\sqrt{x}-2}{\sqrt{x}-3}-\dfrac{5}{x+\sqrt{x}-6}+\dfrac{1}{2-\sqrt{x}}\)
E=\(\left(\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{2-\sqrt{x}}{3-\sqrt{x}}-\dfrac{\sqrt{x}-8}{x-\sqrt{x}-6}\right):\left(1-\dfrac{\sqrt{x}+6}{2\sqrt{x}+4}\right)\)
a)ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
Ta có: \(D=\dfrac{\sqrt{x}-2}{\sqrt{x}+3}-\dfrac{5}{x+\sqrt{x}-6}+\dfrac{1}{2-\sqrt{x}}\)
\(=\dfrac{x-4\sqrt{x}+4-5-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-5\sqrt{x}-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
Tìm m để các hàm số sau có tập xác định là R (hay luôn xác định trên R):
a. \(y=f\left(x\right)=\dfrac{3x+1}{x^2+2\left(m-1\right)x+m^2+3m+5}\)
b. \(y=f\left(x\right)=\sqrt{x^2+2\left(m-1\right)x+m^2+m-6}\)
c. \(y=f\left(x\right)=\dfrac{3x+5}{\sqrt{x^2-2\left(m+3\right)x+m+9}}\)
a.
\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+3m+5\ne0\) ; \(\forall x\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+3m+5\right)< 0\)
\(\Leftrightarrow-5m-4< 0\)
\(\Leftrightarrow m>-\dfrac{4}{5}\)
b.
\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+m-6\ge0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+m-6\right)\le0\)
\(\Leftrightarrow-3m+7\le0\)
\(\Rightarrow m\ge\dfrac{7}{3}\)
c.
\(x^2-2\left(m+3\right)x+m+9>0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m+9\right)< 0\)
\(\Leftrightarrow m^2+5m< 0\Rightarrow-5< m< 0\)