\(x\ge2,\)\(x+y\ge3\). TÌM GTNN CỦA \(P=X^2+Y^2+\frac{1}{X}+\frac{1}{X+Y}\)
Cho x, y là các số thực thỏa mãn \(x\ge2,x+y\ge3\). Tìm GTNN của biểu thức \(T=x^2+y^2+\frac{1}{x}+\frac{1}{x+y}\)
\(T=x^2+y^2+\frac{1}{x}+\frac{1}{x+y}\)
\(=\left(x-2\right)^2+\left(y-1\right)^2+\left(\frac{x}{4}+\frac{1}{x}\right)+\left(\frac{x+y}{9}+\frac{1}{x+y}\right)+\frac{17}{9}\left(x+y\right)+\frac{7x}{9}-5\)
\(\ge0+0+2\sqrt{\frac{x}{4}\cdot\frac{1}{x}}+2\sqrt{\frac{x+y}{9}\cdot\frac{1}{x+y}}+\frac{17\cdot3}{9}+\frac{7\cdot2}{9}-5\)
\(=\frac{35}{9}\)
Đẳng thức xảy ra tại x=2;y=1
Đặt x = 2t
đưa bài toán về dạng:
\(T=4t^2+y^2+\frac{1}{2t}+\frac{1}{2t+y}\ge\left(t^2+t^2+y^2\right)+\frac{1}{2t+y}+\left(2t^2+\frac{1}{2t}\right)\)
\(\ge\frac{\left(2t+y\right)^2}{3}+\frac{1}{2t+y}+\left(2t^2+\frac{1}{2t}\right)\)
\(=\left(\frac{\left(2t+y\right)^2}{3}+\frac{9}{2t+y}+\frac{9}{2t+y}\right)+\left(2t^2+\frac{4}{2t}+\frac{4}{2t}\right)-\frac{17}{2t+y}-\frac{7}{2t}\)
\(\ge3.3+3.2-\frac{17}{3}-\frac{7}{2}=\frac{35}{6}\)
Dấu "=" xảy ra <=> y = t = 1 <=> y = 1 ; x = 2
Dòng 2 là \(\frac{7x}{4}\)
Cho x, y là số thực thỏa mãn \(x\ge2\); \(x+y\ge3\).
Tìm GTNN của biểu thức: \(T=x^2+y^2+\frac{1}{x}+\frac{1}{x+y}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
$(x^2+y^2)(2^2+1)\geq (2x+y)^2\Rightarrow x^2+y^2\geq \frac{(2x+y)^2}{5}$
$\Rightarrow T\geq \frac{(2x+y)^2}{5}+\frac{2x+y}{x(x+y)}$
$=(2x+y)\left(\frac{2x+y}{5}+\frac{1}{x(x+y)}\right)$
Vì $x\geq 2; x+y\geq 3\Rightarrow 2x+y\geq 5(1)$
Áp dụng BĐT AM-GM:
$\frac{2x+y}{5}+\frac{1}{x(x+y)}=\frac{x}{12}+\frac{x+y}{18}+\frac{1}{x(x+y)}+\frac{7}{60}x+\frac{13}{90}(x+y)$
$\geq 3\sqrt[3]{\frac{x}{12}.\frac{x+y}{18}.\frac{1}{x(x+y)}}+\frac{7}{60}.2+\frac{13}{90}.3=\frac{7}{6}(2)$
Từ $(1);(2)\Rightarrow P\geq 5.\frac{7}{6}=\frac{35}{6}$
Tìm GTLN
\(A=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}v\text{ới}x\ge1;y\ge2;z\ge3\)
\(A=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)
Áp dụng BĐT AM-GM ta có:
\(A\le\frac{1+x-1}{x}+\frac{2+y-2}{2y}+\frac{3+z-3}{3z}=1+\frac{1}{2}+\frac{1}{3}=\frac{11}{6}\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x-1=1\\y-2=2\\z-3=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)
Vậy \(A_{max}=\frac{11}{6}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)
Xin lỗi bạn. Bài đó mk lm sai rồi.
Sửa:
Áp dụng BĐT AM-GM ta có:
\(A=\frac{1.\sqrt{x-1}}{x}+\frac{\sqrt{2}.\sqrt{y-2}}{\sqrt{2}.y}+\frac{\sqrt{3}.\sqrt{z-3}}{\sqrt{3}.z}\le\frac{\frac{1+x-1}{2}}{x}+\frac{\frac{2+y-2}{2}}{\sqrt{2}.y}+\frac{\frac{3+z-3}{2}}{\sqrt{3}.z}=\frac{1}{2}+\frac{1}{2.\sqrt{2}}+\frac{1}{2.\sqrt{3}}\)\(=\frac{\sqrt{6}+\sqrt{3}+\sqrt{2}}{2.\sqrt{6}}\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=\sqrt{2}\\\sqrt{z-3}=\sqrt{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x-1=1\\y-2=2\\z-3=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)
Vậy \(A_{max}=\frac{\sqrt{6}+\sqrt{2}+\sqrt{3}}{2.\sqrt{6}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)
Cho \(x\ge2;x+y\ge3\). Tìm Min\(P=x^2+y^2+\frac{1}{x}+\frac{1}{x+y}\)
Ta có:
\(P=\left(x-2\right)^2+\left(y-1\right)^2+\frac{\left(x-2\right)\left(4x-1\right)}{2x}+\frac{\left(x+y-3\right)\left(6x+6y-1\right)}{3\left(x+y\right)}+\frac{35}{6}\ge\frac{35}{6}\) (Sử dụng giả thiết)
Đẳng thức xảy ra khi x = 2; y = 1
Trần Thanh Phương, Nguyễn Văn Đạt, ?Amanda?, svtkvtm,
Lightning Farron, Lê Thảo, Nguyễn Thị Diễm Quỳnh,
@Akai Haruma, @Nguyễn Việt Lâm
1) Cho x, y các số dương thỏa mãn x + y + xy = 8. Tìm GTNN của biểu thức P= x2 + y2
2) Cho x, y > 0, x + y = 1. Tìm GTNN của \(N=\frac{1}{x^2+y^2}+\frac{1}{xy}\)
3) Cho x, y, z là các số dương. Chứng minh rằng: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
Bài 1 : Cho x,y,z không âm thỏa mãn \(\frac{1}{x+1}+\frac{1}{y+2}+\frac{1}{z+6}=1\)
Tìm GTNN của A = \(x+y+z+\frac{1}{x+y+z}\)
Bài 2 : Cho \(a\ge3,b\ge4\)
Tìm GTNN của P = \(\frac{a^2+1}{a}+\frac{b^2+1}{b}\)
1. Tìm giá trị nhỏ nhất của biểu thức:
A= \(\frac{2}{1-x}+\frac{1}{x}\) với 0 < x <1
B= \(\frac{\sqrt{X-1}}{X}+\frac{\sqrt{Y-2}}{Y}+\frac{\sqrt{Z-3}}{Z}\)với \(X\ge1;Y\ge2;Z\ge3\)
C= X. \(\sqrt{1-X^2}\)
Cho \(x\ge2\) CMR \(x+\frac{4}{x}\ge4\)
Dấu bằng sảy ra khi nào
b,Cho các số \(x\ge2;y\ge2;z\ge2\)
Tìm gtnn của bt
\(M=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
a) Áp dụng đbt Cauchy cho 2 số không âm ta có :
\(x+\frac{4}{x}\ge2\sqrt{x\cdot\frac{4}{x}}=2\cdot\sqrt{4}=2\cdot2=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=\frac{4}{x}\\x=2\end{cases}\Leftrightarrow x=2}\)
t thử giải tiếp câu b nhá!Có gì sai thì thôi....mới lớp ah!
\(x+\frac{4}{x}\ge2\sqrt{x.\frac{4}{x}}=2.2=4\)
\(\Rightarrow x+\frac{1}{x}\ge4-\frac{3}{x}\)
Tương tự và cộng theo vế ta có: \(M\ge12-\left(\frac{3}{x}+\frac{3}{y}+\frac{3}{z}\right)\ge12-\left(\frac{3}{2}+\frac{3}{2}+\frac{3}{2}\right)=\frac{15}{2}\)
(Giải thích thêm:Do \(x;y;z\ge2\Rightarrow\frac{3}{x};\frac{3}{y};\frac{3}{z}\le\frac{3}{2}\Rightarrow...\))
Dấu "=" xảy ra khi x = y = z = 2
Tìm giá trị nhỏ nhất của biểu thức: \(A=\frac{x\sqrt{y-2}+y\sqrt{x-3}}{xy}\)với \(x\ge3,y\ge2\)
Ta có:
A=\(\frac{x\sqrt{y-2}+y\sqrt{x-3}}{xy}\)
\(=\frac{\sqrt{y-2}}{y}+\frac{\sqrt{x-3}}{x}\)
Do \(x\ge3;y\ge2\)nen
\(\frac{\sqrt{y-2}}{y}\ge0;\frac{\sqrt{x-3}}{x}\ge0\)
\(\Rightarrow A\ge0\)
Dau "=" xảy ra khi y=2 ; x=3
Vay minA =0 khi x=3; y=2