giải bpt : \(\sqrt{-x^2-4x+21}< x+3\)
giải bpt
\(\sqrt{x+2}+\sqrt{3-x}\le x^3+x^2-4x-1\)
ĐKXĐ: \(-2\le x\le3\)
\(\Leftrightarrow3x^3+3x^2-12x-12+x+4-3\sqrt{x+2}+5-x-3\sqrt{3-x}\ge0\)
\(\Leftrightarrow\left(x^2-x-2\right)\left(3x+6\right)+\frac{x^2-x-2}{x+4+3\sqrt{x+2}}+\frac{x^2-x-2}{5-x+3\sqrt{3-x}}\ge0\)
\(\Leftrightarrow\left(x^2-x-2\right)\left[3\left(x+2\right)+\frac{1}{x+4+3\sqrt{x+2}}+\frac{1}{5-x+3\sqrt{3-x}}\right]\ge0\)
\(\Leftrightarrow x^2-x-2\ge0\)
\(\Rightarrow\left[{}\begin{matrix}-2\le x\le-1\\2\le x\le3\end{matrix}\right.\)
giải bpt sau : \(\sqrt{x^2-3x+20}+\sqrt{x^2-4x+3}\ge\sqrt{x^2-5x+4}\)
Giải BPT\(\sqrt{-x^2+4x-3}>x-2\)
ĐKXĐ: \(1\le x\le3\)
- Với \(1\le x< 2\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\ge2\) hai vế ko âm, bình phương:
\(-x^2+4x-3>x^2-4x+4\)
\(\Leftrightarrow2x^2-8x+7< 0\Rightarrow2\le x< \frac{4+\sqrt{2}}{2}\)
Vậy nghiệm của BPT là: \(1\le x< \frac{4+\sqrt{2}}{2}\)
giải BPT\(\dfrac{2x^2}{\left(3-\sqrt{9+2x}\right)^2}< x+21\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-\dfrac{9}{2}\\x\ne0\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{\left(3+\sqrt{9+2x}\right)^2.2x^2}{\left(3-\sqrt{9+2x}\right)^2\left(3+\sqrt{9+2x}\right)^2}< x+21\)
\(\Leftrightarrow\dfrac{\left(3+\sqrt{9+2x}\right)^2.2x^2}{4x^2}< x+21\)
\(\Leftrightarrow\left(3+\sqrt{9+2x}\right)^2< 2x+42\)
\(\Leftrightarrow x+9+3\sqrt{9+2x}< x+21\)
\(\Leftrightarrow\sqrt{9+2x}< 4\)
\(\Leftrightarrow9+2x< 16\Rightarrow x< \dfrac{7}{2}\)
Vậy \(\left\{{}\begin{matrix}-\dfrac{9}{2}\le x< \dfrac{7}{2}\\x\ne0\end{matrix}\right.\)
Giải bpt: \(x^3+\left(3x^2-4x-4\right)\sqrt{x+1}\le0\)
giải bpt
\(\left(\sqrt{x+4}-1\right)\sqrt{x+2}\ge\frac{x^3+4x^2+3x-2\left(x+3\right)\sqrt[3]{2x+3}}{\left(\sqrt[3]{2x+3}-3\right)\left(\sqrt{x+4}+1\right)}\)
giải bpt
1.\(\sqrt{5x+1}-\sqrt{4x-1}\le3\sqrt{x}\)
2.\(\frac{\sqrt{2\left(x^2-16\right)}}{\sqrt{x-3}}+\sqrt{x-3}>\frac{7-x}{\sqrt{x-}}\)
ĐKXĐ: \(x\ge\frac{1}{4}\)
\(\sqrt{5x+1}\le3\sqrt{x}+\sqrt{4x-1}\)
\(\Leftrightarrow5x+1\le9x+4x-1+6\sqrt{4x^2-x}\)
\(\Leftrightarrow3\sqrt{4x^2-x}\ge1-4x\)
Do \(x\ge1\Rightarrow\left\{{}\begin{matrix}1-4x\le0\\\sqrt{4x^2-x}\ge0\end{matrix}\right.\) \(\Rightarrow\) BPT luôn đúng
Vậy nghiệm của BPT là \(x\ge\frac{1}{4}\)
b/ ĐKXĐ: \(x\ge4\)
\(\Leftrightarrow\sqrt{2\left(x^2-16\right)}+x-3>7-x\)
\(\Leftrightarrow\sqrt{2\left(x^2-16\right)}>10-2x\)
- Với \(x>5\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\le5\) bình phương 2 vế:
\(2\left(x^2-16\right)>4\left(x-5\right)^2\)
\(\Leftrightarrow x^2-20x+66< 0\)
\(\Rightarrow10-\sqrt{34}< x< 10+\sqrt{34}\)
Vậy nghiệm của BPT là \(x>10-\sqrt{34}\)
Giải bpt
x2 - 4x - 21 > 0
\(x^2-4x-21>0\)
\(\Leftrightarrow\) \(x^2-4x+4>25\)
\(\Leftrightarrow\) \(\left(x-2\right)^2>25\)
\(\Leftrightarrow\) \(\left|x-2\right|>5\)
\(\Leftrightarrow\orbr{\begin{cases}x-2>5\\x-2>-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x>7\\x>-3\end{cases}}}\)
\(x^2-4x-21>0\)
\(x^2-4x+4-25>0\)
\(\left(x-2\right)^2>25\)
Ta có: \(25=5^2=\left(-5\right)^2\)
TH1: \(\left(x-2\right)^2>5^2\)
\(x-2>5\)
\(x>7\)
TH2: \(\left(x-2\right)^2>\left(-5\right)^2\)
\(x-2>-5\)
\(x>-3\)
Kết hợp cả 2 TH ta đc x>-3
=.= hok tốt!!
Giải bpt:
a,\(\frac{\sqrt{x^2-x+4}-2x-3}{x-2}>3\)
b, \(\sqrt{x\left(x-1\right)}+\sqrt{x\left(x+2\right)}\le\sqrt{x\left(4x+1\right)}\)