Giải bpt \(\left|2x-3\right|-x\le1\)
giải các BPT sau
a) \(\left|\dfrac{x^2-5x+4}{x^2-4}\right|\le1\)
b) \(\left|x^2-3x+2\right|+x^2>2x\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
1. Tìm nghiệm nguyên: \(\left\{{}\begin{matrix}y-\left|x^2-x\right|-1\ge0\\\left|y-2\right|+\left|x+1\right|-1\le0\end{matrix}\right.\)
2. Tìm m để bpt \(\left|\dfrac{x^2-mx-1}{x^2-2x+3}\right|\le1\) có tập nghiệm bằng R
3. Tìm m để bpt \(x^2+6x\le m\left(\left|x+3\right|+1\right)\) có nghiệm.
giải các bpt sau:
a, | x+2| -|x-1| < x-\(\frac{3}{2}\)
b, \(\left|\frac{-5}{x+2}\right|< \left|\frac{10}{x-1}\right|\)
c, \(\left|\frac{2-3\left|x\right|}{1+x}\right|\le1\)
giải bpt:
\(\left(x^3-27\right)\left(x^3-1\right)\left(2x+3-x^2\right)\ge0\)
giải bất phương trình sau:
a.\(\left|\dfrac{3-2\left|x\right|}{1-x}\right|\le1\)
b. \(\left|x+2\right|+\left|-2x+1\right|< x+1\)
Giải Bpt
\(4\left(x+1\right)^2< \left(2x+1\right)\left(1-\sqrt{3+2x}\right)^2\)
ĐKXĐ: \(x\ge-\frac{3}{2}\)
Do \(1+\sqrt{3+2x}>0\) nên BPT tương đương:
\(4\left(x+1\right)^2\left(1+\sqrt{3+2x}\right)^2< \left(2x+1\right)\left(1-\sqrt{3+2x}\right)^2\left(1+\sqrt{3+2x}\right)^2\)
\(\Leftrightarrow4\left(x+1\right)^2\left(1+\sqrt{3+2x}\right)^2< \left(2x+1\right).4\left(x+1\right)^2\)
- Với \(x=-1\) ko phải là nghiệm
- Với \(x\ne-1\)
\(\Leftrightarrow\left(1+\sqrt{3+2x}\right)^2< 2x+1\)
\(\Leftrightarrow4+2x+2\sqrt{3+2x}< 2x+1\)
\(\Leftrightarrow2\sqrt{3+2x}< -3\)
BPT vô nghiệm
giải BPT\(\dfrac{2x^2}{\left(3-\sqrt{9+2x}\right)^2}< x+21\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-\dfrac{9}{2}\\x\ne0\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{\left(3+\sqrt{9+2x}\right)^2.2x^2}{\left(3-\sqrt{9+2x}\right)^2\left(3+\sqrt{9+2x}\right)^2}< x+21\)
\(\Leftrightarrow\dfrac{\left(3+\sqrt{9+2x}\right)^2.2x^2}{4x^2}< x+21\)
\(\Leftrightarrow\left(3+\sqrt{9+2x}\right)^2< 2x+42\)
\(\Leftrightarrow x+9+3\sqrt{9+2x}< x+21\)
\(\Leftrightarrow\sqrt{9+2x}< 4\)
\(\Leftrightarrow9+2x< 16\Rightarrow x< \dfrac{7}{2}\)
Vậy \(\left\{{}\begin{matrix}-\dfrac{9}{2}\le x< \dfrac{7}{2}\\x\ne0\end{matrix}\right.\)
Giải BPT\(\left(\sqrt{x+3}-\sqrt{x-1}\right)\left(\sqrt{x^2+2x+3}-2\right)\ge4\)
giải BPT :
\(\dfrac{2x-1}{3}-\dfrac{x+3}{2}\le1\)
\(\dfrac{2x-1}{3}\)-\(\dfrac{x+3}{2}\)\(\le\)1
<=>\(\dfrac{2\left(2x-1\right)}{6}\)+\(\dfrac{3\left(x+3\right)}{6}\)\(\le\)\(\dfrac{6}{6}\)
=>4x -2 +3x+9\(\le\)6
<=>7x+7\(\le\)6
<=>7x\(\le\)6-7
<=>7x\(\le\)-1
<=>x\(\le\)\(\dfrac{-1}{7}\)
vậy bất phương trình có nghiệm là x\(\le\)\(\dfrac{-1}{7}\)
\(\dfrac{2x-1}{3}\)-\(\dfrac{x+3}{2}\)\(\le\)1
<=>\(\dfrac{2\left(2x-1\right)}{6}\)-\(\dfrac{3\left(x+3\right)}{6}\le\dfrac{6}{6}\)
=>4x-2-3x-9\(\le\)6
<=>x-11\(\le\)6
<=>x\(\le\)6+11
<=>x\(\le\)17
Vậy bất phương trình có nghiệm là x\(\le\)17