Gt ⇔ \(\left|2x-3\right|\le x+1\)
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-3\le x+1\\x\ge\dfrac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}3-2x\le x+1\\x< \dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le4\\x\ge\dfrac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\x< \dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\dfrac{3}{2}\le x\le4\\\dfrac{2}{3}\le x< \dfrac{3}{2}\end{matrix}\right.\)
⇔ \(\dfrac{2}{3}\le x\le4\)
Vậy bất phương trình có tập nghiệm là
\(S=\left[\dfrac{2}{3};4\right]\)