Tập nghiệm của bất phương trình \(\dfrac{\text{x}-1}{\left(x-2\right)\left(x-3\right)}>0\) là:
A. \(\left(-\infty;1\right)\cup\left(3;+\infty\right)\) B. \(\left(1;2\right)\cup\left(3;+\infty\right)\)
C. \(\left(-\infty;1\right)\cup\left(2;3\right)\) D. \(\left(2;3\right)\)
Tập nghiệm của bất phương trình \(\dfrac{\text{x}^2-1}{x^2+x+1}>0\) là:
A. \(\left(1;+\infty\right)\) B. \(\left(-\infty;1\right)\) C. \(\left(-\infty;-1\right)\cup\left(1;+\infty\right)\) D. (-1; 1)
Với giá trị nào của tham số m thì phương trình mx2 - 2mx + 1 = 0 có hai nghiệm dương phân biệt?
A. m > 0 B. 0 < m < 1 C. \(\text{m}\in\left(-\infty;2\right)\backslash\left\{0\right\}\) D. m > 1
Bài 1 : Giải bất phương trình sau
1 , \(\left(2x+3\right)\left(5x-7\right)\ge0\)
2 , \(\left(3-2x\right)\left(4x+3\right)< 0\)
3 , \(\left(2x+5\right)\left(3-x\right)\left(5x-1\right)\le0\)
4 , \(x^2-3x+2< 0\)
5 , \(-x^2+12x+13>0\)
6 , \(x^2+6x+9\le0\)
7 , \(\frac{x+2}{3x+1}>\frac{x-2}{2x-1}\)
8 , \(\frac{1}{x+2}< \frac{3}{x-3}\)
9 , \(\frac{5x-6}{2x-5}\le6\)
10 , \(\left(x+1\right)\left(x-1\right)\left(3x-6\right)>0\)
Bài 2: Xét sự tương đương của các cặp BPT sau
a, \(4x-6+\frac{1}{x-2}\ge2+\frac{1}{x-2}\) và \(4x-8\ge0\)
b, \(3x-2+\frac{1}{x-3}\ge1+\frac{1}{x-3}\) và \(3x-3\ge0\)
c, \(x+4\ge0\) và \(\left(x-1\right)^2\left(x+4\right)>0\)
d,\(\left(x^2-4x+5\right)\left(x-5\right)>0\) và \(x-5>0\)
e, \(x-12\ge0\) và \(\left(x-2\right)^2\ge0\)
f, \(\sqrt{\left(x-1\right)\left(x-2\right)}\ge x\) và \(\sqrt{x-1}.\sqrt{x-2}\ge x\)
Bài 3. Giải bất phương trình
a, \(|5x – 3| < 2\)
b, \(\left|3x-2\right|\ge6\)
c, \(\left|2x-1\right|\le x+2\)
d, \(\left|3x+7\right|>2x+3\)
e, \(\sqrt{x-3}\ge\sqrt{3-x}\)
f, \(\sqrt{x-1}< 3+\sqrt{x-1}\)
g, \(\frac{x-2}{\sqrt{x-4}}\ge\frac{4}{\sqrt{x-4}}\)
h, \(\left(x+5\right)\sqrt{\left(x-3\right)\left(x^2-10x+25\right)}>0\)
Tập nghiệm của bất phương trình -x2 + 4x - 3 < 0 là:
A. \(\left(-\infty;1\right)\cup\left(3;+\infty\right)\) B. (1; 3) C. \(\text{∀}\text{x}\in\text{R}\) D. \(\left(-1;1\right)\)
Bài 2 : Giải các bất phương trình sau :
11 , \(\left(2x-7\right)\left(4-5x\right)\ge0\)
12 , \(x^2-x-20>2\left(x-11\right)\)
13 , \(3x\left(2x+7\right)\left(9-3x\right)\ge0\)
14 , \(x^3+8x^2+17x+10< 0\)
15 , \(x^3+6x^2+11x+6>0\)
16 , \(\frac{\left(2x-5\right)\left(x+2\right)}{-4x+3}>0\)
17 , \(\frac{x-3}{x+1}>\frac{x+5}{x-2}\)
18 , \(\frac{x-3}{x+5}< \frac{1-2x}{x-3}\)
19 , \(\frac{3x-4}{x-2}>1\)
20 , \(\frac{2x-5}{2-x}\ge-1\)
Giải các bất phương trình sau:
a) \(\frac{x^2-9x+14}{x^2+9x+14}\ge0\)
b) \(\frac{x^2+1}{x^2+3x-10}< 0\)
c) \(\frac{10-x}{5+x^2}>\frac{1}{2}\)
d) \(\frac{x+1}{x-1}+2>\frac{x-1}{x}\)
e) \(\frac{1}{x+1}+\frac{2}{x+3}\le\frac{3}{x+2}\)
f) \(\frac{x-3}{x+1}-\frac{x-2}{x-1}\le\frac{x^2+4x+15}{x^2-1}\)
g) \(\frac{x^2-4x+3}{x^2-2x}\ge0\)
h) \(\frac{x+2}{3x+1}\le\frac{x-2}{2x-1}\)
i) \(\frac{11x^2-5x+6}{x^2+5x+6}\le x\)
j) \(\frac{\left(1-2x\right)\left(\sqrt{3}x+1\right)}{2\sqrt{2}x-1}\ge0\)
k) \(\frac{\left(5x+1\right)-\left(7x-2\right)}{\left(-x^2-1\right)\left(x^2-4x+4\right)}\le0\)
l) \(\frac{1}{x^2-7x+5}\ge\frac{1}{x^2+2x+5}\)
m) \(\frac{\left(x-1\right)\left(x^3-1\right)}{x^2+\left(1+2\sqrt{2}\right)x+2+\sqrt{2}}\le0\)
1. Biết bất phương trình \(\left\{{}\begin{matrix}x-1< 2x-3\\\frac{5-3x}{2}\le x-3\\3x\le x+5\end{matrix}\right.\) có tập nghiệm là một đoạn [a;b]. Hỏi a+b bằng:
A.\(\frac{11}{2}\) B.8 C.\(\frac{9}{2}\) D.\(\frac{47}{10}\)
2. Số nghiệm nguyên của hệ bất phương trình \(\left\{{}\begin{matrix}6x+\frac{5}{7}>4x+7\\\frac{8x+3}{2}< 2x+25\end{matrix}\right.\) là;
A.vô số B.4 C.8 D.0
3. Tổng tất cả các nghiệm nguyên của bất phương trình \(\left\{{}\begin{matrix}5x-2< 4x+5\\x^2< \left(x+2\right)^2\end{matrix}\right.\) bằng:
A.21 B.27 C.28 D.29
4. Cho bất phương trình \(\left\{{}\begin{matrix}\left(1-x\right)^2\le8-4x+x^2\\\left(x+2\right)^3< x^3+6x^2+13x+9\end{matrix}\right.\)
Tổng số nghiệm nguyên lớn nhất và nghiệm nguyên nhỏ nhất của bất phương trình bằng:
A.2 B.3 C.6 D.7
5. Hệ bất phương trình \(\left\{{}\begin{matrix}2x-1>0\\x-m< 2\end{matrix}\right.\) có nghiệm khi và chỉ khi:
A.m<\(-\frac{3}{2}\) B.m\(\le\)\(-\frac{3}{2}\) C.m>\(-\frac{3}{2}\) D.m\(\ge-\frac{3}{2}\)
XIN GIẢI RA TỰ LUẬN GIÚP EM