CMR : \(\dfrac{a^4+b^4}{2}\ge ab^3+a^3b-a^2b^2\)
c/m bất đảng thức :
a)\(\dfrac{a}{3b}+\dfrac{b\left(a+b\right)}{a^2+ab+b^2}\)
b)\(\dfrac{a}{b^2}+\dfrac{b}{a^2}+\dfrac{16}{a+b}\ge5\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
c)\(\dfrac{a}{2b}+\dfrac{2b}{a+b}\)+\(\dfrac{ab^2}{2\left(a^3+2b^3\right)}\ge\dfrac{5}{3}\)
d)\(\dfrac{a}{4b^2}+\dfrac{2b}{\left(a+b\right)^2}\ge\dfrac{9}{4\left(a+2b\right)}\)
e)\(\dfrac{2}{a^2+ab+b^2}+\dfrac{1}{3b^2}\ge\dfrac{9}{\left(a+2b\right)^2}\)
Cho 2 số thực a , b . CMR \(2\left(a^4+b^4\right)\ge ab^3+a^3b+2a^2b^2\)
Áp dụng BĐT Bunhiacopxki, ta có:
\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\)\(\ge4a^2b^2\)(BĐT Cô-si)
Có: \(ab^3+a^3b=ab\left(a^2+b^2\right)\)
Áp dụng BĐT Cô-si, ta có:
\(ab\left(a^2+b^2\right)\ge2a^2b^2\)
\(\Rightarrow ab^3+a^3b+2a^2b^2\ge4a^2b^2\)
Vậy VT=VP.
Ta có đpcm.
Cho a,b thuộc R. CMR :
\(2\left(a^4+b^4\right)\ge ab^3+a^3b+2a^2b^2\) với mọi a, b
Giả sử \(2\left(a^4+b^4\right)\ge a^3b+ab^3+2a^2b^2\)
\(\Leftrightarrow2a^4+2b^4-a^3b-ab^3-2a^2b^2\ge0\)
\(\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)+\left(a^4-2a^2b^2+b^4\right)\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)+\left(a^2-b^2\right)^2\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)+\left(a^2-b^2\right)^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2-ab+b^2\right)+\left(a^2-b^2\right)^2\ge0\) \(\forall a;b\) \(\left(1\right)\)
Lại có: \(a^2-ab+b^2=\left(a^2-2.a.\frac{b}{2}+\frac{b^2}{4}\right)+\frac{3b^2}{4}\)
\(=\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}\ge0\) \(\forall a;b\) \(\left(2\right)\)
Từ (1) và (2) suy ra \(\left(a-b\right)^2\left(a^2-ab+b^2\right)+\left(a^2-b^2\right)^2\ge0\forall a;b\)
\(\Leftrightarrow2\left(a^4+b^4\right)\ge a^3b+ab^3+2a^2b^2\forall a;b\)
Vậy \(2\left(a^4+b^4\right)\ge a^3b+ab^3+2a^2b^2\) với mọi a;b
c/m:\(\dfrac{a^4+b^4}{2}\)\(\ge\)\(ab^3+a^3b-a^2b^2\)
- Nếu \(a,b\) là hai số dương thì:
\(ab^3+a^3b-a^2b^2=ab\left(a^2+b^2\right)-a^2b^2\)\(\le\dfrac{\left(a^2+b^2\right)}{2}\left(a^2+b^2\right)-a^2b^2\)\(=\dfrac{\left(a^2+b^2\right)^2-2a^2b^2}{2}=\dfrac{a^4+b^4}{2}\left(đpcm\right)\).
\(CMR:\)\(\frac{a^4+b^4}{2}\ge ab^3+a^3b-a^2b^2\)
Cho a, b, c dương. CMR: \(\dfrac{2a^2+3b^2}{2a^3+3b^3}+\dfrac{2b^2+3a^2}{2b^3+3a^3}\le\dfrac{4}{a+b}\)
\(\dfrac{4}{a+b}-\dfrac{2a^2+3b^2}{2a^3+3b^3}-\dfrac{2b^2+3a^2}{2b^3+3a^3}=\dfrac{\left(a-b\right)^2.\left(12b^4+12ab^3-a^2b^2+12a^3b+12a^4\right)}{\left(a+b\right)\left(2a^3+3b^3\right)\left(2b^3+3a^3\right)}\ge0\)
PS: Còn cách dùng holder nữa mà lười quá
holder Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath
Cho a, b,c dương. cmr: \(\dfrac{a^3}{2b+3c}+\dfrac{b^3}{2c+3a}+\dfrac{c^3}{2a+3b}\ge\dfrac{1}{5}\left(a^2+b^2+c^2\right)\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}=\frac{a^3}{2b+3c}+\frac{b^3}{2c+3a}+\frac{c^3}{2a+3b}=\frac{a^4}{2ab+3ac}+\frac{b^4}{2bc+3ba}+\frac{c^4}{2ac+3bc}\)
\(\geq \frac{(a^2+b^2+c^2)^2}{2ab+3ac+2bc+3ba+2ac+3bc}=\frac{(a^2+b^2+c^2)^2}{5(ab+bc+ac)}\)
Theo hệ quả của BĐT AM-GM ta có:
\(a^2+b^2+c^2\geq ab+bc+ac\)
\(\Rightarrow \text{VT}\geq \frac{(a^2+b^2+c^2)(ab+bc+ac)}{5(ab+bc+ac)}=\frac{a^2+b^2+c^2}{5}\)
Ta có đpcm.
Dấu bằng xảy ra khi \(a=b=c\)
Cho các số thực dương a,b. Chứng minh rằng:
a/ \(\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{9ab}{a^2+b^2}\ge\dfrac{13}{2}\)
b/ \(\dfrac{a}{3b}+\dfrac{b\left(a+b\right)}{a^2+ab+b^2}\ge1\)
c/ \(\dfrac{a}{2b}+\dfrac{2b}{a+b}+\dfrac{ab}{2\left(a^3+2b^3\right)}\ge\dfrac{5}{3}\)
a) Sai với \(a=1,b=2\)
b)
Thực hiện biến đổi tương đương:
\(\frac{a}{3b}+\frac{b(a+b)}{a^2+ab+b^2}\geq 1\)
\(\Leftrightarrow \frac{a}{3b}+\frac{b(a+b)+a^2}{a^2+ab+b^2}-\frac{a^2}{a^2+ab+b^2}\geq 1\)
\(\Leftrightarrow \frac{a}{3b}-\frac{a^2}{a^2+ab+b^2}\geq 0\)
\(\Leftrightarrow \frac{1}{3b}-\frac{a}{a^2+ab+b^2}\geq 0\)
\(\Leftrightarrow \frac{a^2+ab+b^2-3ab}{3b(a^2+ab+b^2)}\geq 0\)
\(\Leftrightarrow \frac{(a-b)^2}{3b(a^2+ab+b^2)}\geq 0\) (luôn đúng)
Do đó ta có đpcm. Dấu bằng xảy ra khi $a=b$
c) BĐT sai với \(a=1,b=2\)
Cho a, b, c, d > 0. CMR \(\dfrac{a}{b+2c+3d}+\dfrac{b}{c+2d+3a}+\dfrac{c}{d+2a+3b}+\dfrac{d}{a+2b+3c}\ge\dfrac{2}{3}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{a}{b+2c+3d}+\dfrac{b}{c+2d+3a}+\dfrac{c}{d+2a+3b}+\dfrac{d}{a+2b+3c}\)
\(=\dfrac{a^2}{ab+2ac+3ad}+\dfrac{b^2}{bc+2bd+3ab}+\dfrac{c^2}{cd+2ac+3bc}+\dfrac{d^2}{ad+2bd+3cd}\)
\(\ge\dfrac{\left(a+b+c+d\right)^2}{4\left(ab+ad+bc+bd+ca+cd\right)}\ge\dfrac{\left(a+b+c+d\right)^2}{\dfrac{3}{2}\left(a+b+c+d\right)^2}=\dfrac{2}{3}\)
*Chứng minh \(4\left(ab+ad+bc+bd+ca+cd\right)\le\dfrac{3}{2}\left(a+b+c+d\right)^2\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(a-c\right)^2+\left(c-d\right)^2\ge0\)