- Nếu \(a,b\) là hai số dương thì:
\(ab^3+a^3b-a^2b^2=ab\left(a^2+b^2\right)-a^2b^2\)\(\le\dfrac{\left(a^2+b^2\right)}{2}\left(a^2+b^2\right)-a^2b^2\)\(=\dfrac{\left(a^2+b^2\right)^2-2a^2b^2}{2}=\dfrac{a^4+b^4}{2}\left(đpcm\right)\).
- Nếu \(a,b\) là hai số dương thì:
\(ab^3+a^3b-a^2b^2=ab\left(a^2+b^2\right)-a^2b^2\)\(\le\dfrac{\left(a^2+b^2\right)}{2}\left(a^2+b^2\right)-a^2b^2\)\(=\dfrac{\left(a^2+b^2\right)^2-2a^2b^2}{2}=\dfrac{a^4+b^4}{2}\left(đpcm\right)\).
Bài 1: Cho a,b,c là những số dương thỏa mãn: a+b+c=3
CMR: \(\dfrac{a^2}{a+2b^3}+\dfrac{b^2}{b+2c^3}+\dfrac{c^2}{c+2a^3}\ge1\)
Bài 2: Cho a, b, c thỏa mãn: ab+bc+ca=3
CMR: \(\dfrac{a}{2b^3+1}+\dfrac{b}{2c^3+1}+\dfrac{c}{2a^3+1}\ge1\)
Bài 3: Cho a, b, c > 0. CMR: \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+3b\)
Dấu = xảy ra khi a=b=2c
Cho a,b,c>0. CM: \(\dfrac{1}{3a}+\dfrac{1}{3b}+\dfrac{1}{3c}\ge\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\)
a)CMR: \(a^2+b^2+1\ge ab+a+b\)
b) Cho a,b > 0, CMR: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
c)Tìm giá trị nhỏ nhất của: M=\(x^4-6x^3+13x^2-12x-5\)
Rút gọn A=\((\dfrac{1}{2a+b} - \dfrac{a^2 -1 }{2a^3 -b +2a -a^2b}) : (\dfrac{4a+2b}{a^3b+ab} - \dfrac{2}{a})\)
Tính A biết 4a^2+b^2=5ab và a>b>0
Rút gọn phân thức :
a, \(\dfrac{\left(a-b\right)\left(c-d\right)}{\left(b^2-a^2\right)\left(d^2-c^2\right)}\)
b, \(\dfrac{m^4-m}{2m^2+2m+2}\)
c, \(\dfrac{ab^2+a^3-a^2b}{a^3+b^4}\)
Cho a,b,c là các số dương.
a) CMR: \(a^3+b^3\ge a^2b+ab^2\)
b) Giả sử abc=1. Tìm GTLN của biểu thức:
\(P=\dfrac{1}{a^3+b^3+1}+\dfrac{1}{b^3+c^3+1}+\dfrac{1}{c^3+a^3+1}\)
1. Cho a,b,c > 0. Cmr :
\(\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\ge\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
2. Cho a,b,c > 0. Cmr :
\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\ge\frac{2}{3}\)
Chứng minh các bất đẳng thức sau:
a) \(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)
b) \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
c) \(a^2+2b^2+c^2\ge2ab-2bc\)
d) \(x^2+y^2+z^2+\dfrac{3}{4}\ge x+y+z\)
e) \(a^2+b^2\ge\left(a+b\right)^2\ge4ab\)
f) \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)
Cho các số thực dương a,b,c thỏa mãn a^2+b^2+c^2=12. Chứng minh rằng
\(\dfrac{a+b}{4+bc}\)+\(\dfrac{b+c}{4+ca}\)+\(\dfrac{c+a}{4+ab}\) \(\ge\) \(\dfrac{3}{2}\)