Cho a,b,c khác 0 thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
Tính \(E=\dfrac{a^2b^2c^2}{a^2b^2+b^2c^2-c^2a^2}+\dfrac{a^2b^2c^2}{b^2c^2+c^2a^2-a^2b^2}+\dfrac{a^2b^2c^2}{c^2a^2+a^2b^2-b^2c^2}\)
Bài 1: Cho a,b,c là những số dương thỏa mãn: a+b+c=3
CMR: \(\dfrac{a^2}{a+2b^3}+\dfrac{b^2}{b+2c^3}+\dfrac{c^2}{c+2a^3}\ge1\)
Bài 2: Cho a, b, c thỏa mãn: ab+bc+ca=3
CMR: \(\dfrac{a}{2b^3+1}+\dfrac{b}{2c^3+1}+\dfrac{c}{2a^3+1}\ge1\)
Bài 3: Cho a, b, c > 0. CMR: \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+3b\)
Dấu = xảy ra khi a=b=2c
Cho a,b,c>0. CM: \(\dfrac{1}{3a}+\dfrac{1}{3b}+\dfrac{1}{3c}\ge\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\)
a) Cho x2 - 2xy +2y2 -2x +6y +13 =0. Tính N =\(\dfrac{3x^2y-1}{4xy}\)
b) Cho 4a2 +b2 = 5ab và 2a>b>0. Tính P =\(\dfrac{ab}{4a^2-b^2}\)
Cho a,b,c >0 và abc = 1.
Tìm GTNN của P=\(\dfrac{bc}{a^2b+a^2c}+\dfrac{ac}{b^2a+b^2c}+\dfrac{ab}{c^2a+c^2b}\)
rust gọn các biểu thức sau
a) A= \(\dfrac{1}{a-b}+\dfrac{1}{a+b}+\dfrac{2a}{a^2+b^2}+\dfrac{4a^3}{a^4+b^4}+\dfrac{8a^7}{a^8+b^8}\)
b ) B= \(\dfrac{1}{a^2+a}+\dfrac{1}{a^2+3a+2}+\dfrac{1}{a^2+5a+6}+\dfrac{1}{a^2+7a+9}+\dfrac{1}{a^2+9a+20}\)
\(E=\dfrac{a-b}{2a+b}-\dfrac{3a-b}{a-2b}\) biết \(7a^2-15ab+2b^2=0\)
Cho a,b cùng dấu. Chứng minh:
\(\dfrac{a^2b}{2a^2+b^3}+\dfrac{2}{3}\ge\dfrac{a^2+2ab}{2a^2+b^2}\)
Cho: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) và a, b, c \(\ne\) 0
\(A=\dfrac{b^2c^2}{a}+\dfrac{c^2a^2}{b}+\dfrac{a^2b^2}{c}\)
CMR: 3abc = A