Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đạt Kien
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 3 2022 lúc 6:59

Trường hợp 1: m=10

Phương trình sẽ là -40x+6=0

hay x=3/20

=>m=10 sẽ thỏa mãn trường hợp a

Trường hợp 2: m<>10

\(\Delta=\left(-4m\right)^2-4\left(m-10\right)\left(m-4\right)\)

\(=16m^2-4\left(m^2-14m+40\right)\)

\(=16m^2-4m^2+56m-160\)

\(=12m^2+56m-160\)

\(=4\left(3m^2+14m-40\right)\)

\(=4\left(3m^2-6m+20m-40\right)\)

\(=4\left(m-2\right)\left(3m+20\right)\)

a: Để phương trình có nghiệm thì (m-2)(3m+20)>=0

=>m>=2 hoặc m<=-20/3

b: Để phương trình có hai nghiệm phân biệt đều dương thì 

\(\left\{{}\begin{matrix}\left(m-2\right)\left(3m+20\right)>0\\\dfrac{4m}{m-10}>0\\\dfrac{m-4}{m-10}>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(3m+20\right)>0\\m\in\left(-\infty;0\right)\cup\left(10;+\infty\right)\\m\in\left(-\infty;4\right)\cup\left(10;+\infty\right)\end{matrix}\right.\)

\(\Leftrightarrow m\in\left(-\infty;-\dfrac{20}{3}\right)\cup\left(10;+\infty\right)\)

Thầy Tùng Dương
Xem chi tiết
Nguyễn Huy Tú
12 tháng 5 2021 lúc 16:54

a, Do  \(x=-4\)là một nghiệm của pt trên nên 

Thay \(x=-4\)vào pt trên pt có dạng : 

\(16+4m-10m+2=0\Leftrightarrow-6m=-18\Leftrightarrow m=3\)

Thay m = 3 vào pt, pt có dạng : \(x^2-3x-28=0\)

\(\Delta=9-4.\left(-28\right)=9+112=121>0\)

vậy pt có 2 nghiệm pb : \(x_1=\frac{3-11}{2}=-\frac{8}{2}=-4;x_2=\frac{3+11}{2}=7\)

b, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=6\\x_1x_2=\frac{c}{a}=7\end{cases}}\)

Khách vãng lai đã xóa
nguyen manh tien
13 tháng 5 2021 lúc 16:52

Vậy m=3, và ngiệm còn lại x2=7

Khách vãng lai đã xóa
Nguyễn Thị Thúy Hường
13 tháng 5 2021 lúc 20:49

a)

m = 3

x2=7

 

Khách vãng lai đã xóa
Lê Xuân Đức
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Dưa Hấu
11 tháng 7 2021 lúc 14:55

undefined

HT2k02
11 tháng 7 2021 lúc 14:55

a) Với m = -3 phương trình trở thành

\(x^2+8x=0\\ \Leftrightarrow x\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{0;-8\right\}\)

b. Xét phương trình \(x^2-2\left(m-1\right)x-m-3=0\)

\(\Delta'=\left(m-1\right)^2-\left(-m-3\right)=m^2-2m+1+m+3=m^2-m+4=\left(m-\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\)

Suy ra, phương trình có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\) (hệ thức Viet)

Ta có : 

\(x_1^2+x_2^2=10\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\\ \Leftrightarrow4\left(m-1\right)^2+2\left(m+3\right)=10\\ \Leftrightarrow4m^2-6m=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{3}{2}\end{matrix}\right.\)

Vậy \(m\in\left\{0;\dfrac{3}{2}\right\}\)

Nguyễn Huy Tú
11 tháng 7 2021 lúc 14:59

undefined

Hạnh Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2023 lúc 18:49

1:

\(\left\{{}\begin{matrix}\dfrac{2x+1}{x+1}+\dfrac{3y}{y-1}=1\\\dfrac{3x}{x+1}-\dfrac{4y}{y-1}=10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2-\dfrac{1}{x+1}+3+\dfrac{3}{y-1}=1\\3-\dfrac{3}{x+1}-\dfrac{4y-4+4}{y-1}=10\end{matrix}\right.\)

=>-1/(x+1)+3/(y-1)=1-2-3=-5 và -3/(x+1)-4/(y-1)=10-3-4=3

=>x+1=13/11 và y-1=-13/18

=>x=2/11 và y=5/18

tranthuylinh
Xem chi tiết
Lê Thị Thục Hiền
7 tháng 7 2021 lúc 17:36

1.Thay m=-1 vào pt ta được:

\(x^4-2x^2-3=0\)\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vn\right)\\x^2=3\end{matrix}\right.\)\(\Rightarrow x=\pm\sqrt{3}\)

Vậy...

2.Đặt \(t=x^2\left(t\ge0\right)\)

Với mỗi t>0 thì sẽ luôn có hai x phân biệt

Pttt: \(t^2-2t+m-2=0\) (2)

Để pt (1) có 4 nghiệm pb \(\Leftrightarrow\) PT (2) có hai nghiệm pb dương

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\S=2>0\left(lđ\right)\\P=m-2>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4-4\left(m-2\right)>0\\m>2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m< 3\\m>2\end{matrix}\right.\)\(\Rightarrow2< m< 3\)

Vậy...

Nguyễn Việt Lâm
7 tháng 7 2021 lúc 17:36

1. Bạn tự giải

2. Đặt \(x^2=t\ge0\) pt trở thành:

\(t^2-2t+m-2=0\) (2)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (2) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=1-\left(m-2\right)>0\\t_1+t_2=2>0\\t_1t_2=m-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 3\\m>2\end{matrix}\right.\)

\(\Rightarrow2< m< 3\)

Huyền còi chấm mắm tôm
Xem chi tiết
Hoàng Nguyệt
Xem chi tiết
Hồng Phúc
7 tháng 8 2021 lúc 14:53

a, ĐK: \(x\le-1,x\ge3\)

\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)

\(\Leftrightarrow x^2-2x-3=1\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)

Hồng Phúc
7 tháng 8 2021 lúc 15:05

b, ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó phương trình tương đương:

\(3t-t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)

Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)

Hồng Phúc
7 tháng 8 2021 lúc 15:23

c, ĐK: \(0\le x\le9\)

Đặt \(\sqrt{9x-x^2}=t\left(0\le t\le\dfrac{9}{2}\right)\)

\(pt\Leftrightarrow9+2\sqrt{9x-x^2}=-x^2+9x+m\)

\(\Leftrightarrow-\left(-x^2+9x\right)+2\sqrt{9x-x^2}+9=m\)

\(\Leftrightarrow-t^2+2t+9=m\)

Khi \(m=9,pt\Leftrightarrow-t^2+2t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9x-x^2=0\\9x-x^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=9\left(tm\right)\\x=\dfrac{9\pm\sqrt{65}}{2}\left(tm\right)\end{matrix}\right.\)

Phương trình đã cho có nghiệm khi phương trình \(m=f\left(t\right)=-t^2+2t+9\) có nghiệm

\(\Leftrightarrow minf\left(t\right)\le m\le maxf\left(t\right)\)

\(\Leftrightarrow-\dfrac{9}{4}\le m\le10\)

....
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 8 2021 lúc 12:20

Đặt \(x^2=t\) phương trình trở thành:

\(t^2-2\left(m+1\right)t+m-2=0\) (1)

a. Phương trình có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m+1\right)^2-\left(m-2\right)>0\\t_1+t_2=2\left(m+1\right)>0\\t_1t_2=m-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2+m+3>0\left(\text{luôn đúng}\right)\\m>-1\\m>2\end{matrix}\right.\) 

\(\Rightarrow m>2\)

b. Do \(\Delta'=m^2+m+3>0;\forall m\) nên pt đã cho vô nghiệm khi (1) có 2 nghiệm pb đều âm

\(\Rightarrow\left\{{}\begin{matrix}t_1+t_2=2\left(m+1\right)< 0\\t_1t_2=m-2>0\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}m< -1\\m>2\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

c. Pt có đúng 2 nghiệm khi (1) có 2 nghiệm trái dấu

\(\Leftrightarrow t_1t_2=m-2< 0\Rightarrow m< 2\)

Chuột Hà Nội
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 2 2022 lúc 8:45

Câu 10: A

Câu 11: A

Câu 12: C

Câu 13: A

Câu 15: B

Câu 16: C

Câu 17: B

Câu 18: D