Phương trình x 3 + x x + 1 = m x 2 + 1 2 có nghiệm thực khi và chỉ khi
A. - 6 ≤ m ≤ 3 4
B. - 1 ≤ m ≤ 3 4
C. - 1 4 ≤ m ≤ 3 4
D. 1 4 ≤ m ≤ 3 4
Bài 1: Cho bất phương trình \(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\). Xác định m để bất phương trình nghiệm \(\forall x\in[-1;3]\)
Bài 2: Cho bất phương trình \(x^2-6x+\sqrt{-x^2+6x-8}+m-1\ge0\). Xác định m để bất phương trình nghiệm đúng \(\forall x\in[2;4]\)
Cho phương trình x² – 2(3-m)x-4-m² =0 (x là ẩn, m là tham số) (1). a. Giải phương trình (1) với m = 1. b. Tìm m để phương trình (1) có hai nghiệm phân biệt X₁ , X ₂ thỏa mãn ||x₁ | — |x₂ || =0.
a: Khi m=1 thì (1) sẽ là:
x^2-4x-5=0
=>x=5 hoặc x=-1
Cho phương trình: xᒾ + 2(m − 1)x+mᒾ - 3 = 0 (1) (m là tham số) a) Giải phương trình (1) với m=2 b) Tìm m để phương trình (1) có hai nghiệm X₁; x₂ thỏa mãn x₁ + x₂ =52
a: Khi m=2 thì (1) sẽ là x^2+2x+1=0
=>x=-1
b:x1+x2=52
=>2m-2=52
=>2m=54
=>m=27
Cho phương trình \(x^2-2\left(m-1\right)x-m-3=0\)
a.Giải phương trình với m=-3
b.Tìm m để phương trình (1) có 2 nghiệm thỏa mãn \(x^2_1+x^2_2=10\)
a) Với m = -3 phương trình trở thành
\(x^2+8x=0\\ \Leftrightarrow x\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{0;-8\right\}\)
b. Xét phương trình \(x^2-2\left(m-1\right)x-m-3=0\)
\(\Delta'=\left(m-1\right)^2-\left(-m-3\right)=m^2-2m+1+m+3=m^2-m+4=\left(m-\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\)
Suy ra, phương trình có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\) (hệ thức Viet)
Ta có :
\(x_1^2+x_2^2=10\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\\ \Leftrightarrow4\left(m-1\right)^2+2\left(m+3\right)=10\\ \Leftrightarrow4m^2-6m=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(m\in\left\{0;\dfrac{3}{2}\right\}\)
Cho phương trình (ẩn x): (x – m)(x + 2) – 5mx + 4 = (x + m)(x – 2) – 6x (1).
Tìm các giá trị của m để phương trình (1) có nghiệm gấp đôi nghiệm của phương
trình 2x( x – 3 ) – 6x = 2(x – 1)(x + 5).
Cho hệ phương trình:
\(\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\x^3+y^3+\dfrac{1}{x^3}+\dfrac{1}{y^3}=15m-25\end{matrix}\right.\) ( m là tham số).
a, Giải hệ phương trình trên khi m = 3.
b, Tìm m để hệ phương trình trên có nghiệm (x0; y0) và x0, y0 là những số dương.
Đặt \(x+\dfrac{1}{x}=a;y+\dfrac{1}{y}=b\left(\left|a\right|\ge2;\left|b\right|\ge2\right)\)
\(\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\x^3+y^3+\dfrac{1}{x^3}+\dfrac{1}{y^3}=15m-25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x^3+\dfrac{1}{x^3}\right)+\left(y^3+\dfrac{1}{y^3}\right)=15m-25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3-3\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)^3-3\left(y+\dfrac{1}{y}\right)=15m-25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3+\left(y+\dfrac{1}{y}\right)^3-3\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)=15m-25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3+\left(y+\dfrac{1}{y}\right)^3=15m-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\a^3+b^3=15m-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\\left(a+b\right)^3-3ab\left(a+b\right)=15m-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\125-15ab=15m-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\ab=9-m\end{matrix}\right.\)
\(\Rightarrow a,b\) là nghiệm của phương trình \(t^2-5t+9-m=0\left(1\right)\)
a, Nếu \(m=3\), phương trình \(\left(1\right)\) trở thành
\(t^2-5t+6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\\\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=2\\y+\dfrac{1}{y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\y^2-3y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3\pm\sqrt{5}}{2}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=3\\y+\dfrac{1}{y}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3\pm\sqrt{5}}{2}\\y=1\end{matrix}\right.\)
Vậy ...
b, \(\left(1\right)\Leftrightarrow t=\dfrac{5\pm\sqrt{4m-11}}{2}\left(m\ge\dfrac{11}{4}\right)\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5\pm\sqrt{4m-11}}{2}\\b=\dfrac{5\mp\sqrt{4m-11}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}=\dfrac{5\pm\sqrt{4m-11}}{2}\\y+\dfrac{1}{y}=\dfrac{5\mp\sqrt{4m-11}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-\left(5\pm\sqrt{4m-11}\right)+2=0\left(2\right)\\2y^2-\left(5\mp\sqrt{4m-11}\right)+2=0\end{matrix}\right.\)
Yêu cầu bài toán thỏa mãn khi phương trình \(\left(2\right)\) có nghiệm dương
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(5\pm\sqrt{4m-11}\right)^2-16\ge0\\\dfrac{5\pm\sqrt{4m-11}}{2}>0\\1>0\end{matrix}\right.\)
\(\Leftrightarrow...\)
3/ Cho phương trình x ^ 2 - 2(m - 3) * x + m ^ 2 + 3 = 0 phương trình có hai nghiệm phân biệt x 1 ,x 2 thỏa mãn x 1 ^ 2 +x 2 ^ 2 =86
\(\Delta'=\left(m-3\right)^2-\left(m^2+3\right)=-6m+6>0\Rightarrow m< 1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-3\right)\\x_1x_2=m^2+3\end{matrix}\right.\)
\(x_1^2+x_2^2=86\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=86\)
\(\Leftrightarrow4\left(m-3\right)^2-2\left(m^2+3\right)=86\)
\(\Leftrightarrow m^2-12m-28=0\Rightarrow\left[{}\begin{matrix}m=14\left(loại\right)\\m=-2\end{matrix}\right.\)
Ta có : \(\Delta=\left(2m+6\right)^2-4\left(m^2+3\right)=4m^2+24m+36-4m^2-12=24m+24\)
Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)
\(24m+24>0\Leftrightarrow24m>-24\Leftrightarrow m>-1\)
Theo hệ thức Viet :\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+6\\x_1x_2=\dfrac{c}{a}=m^2+3\end{matrix}\right.\)
mà \(\left(x_1+x_2\right)^2=\left(2m+6\right)^2\Leftrightarrow x_1^2+x_2^2=4m^2+24m+36-2x_1x_2\)
\(\Leftrightarrow x_1^2+x_2^2=4m^2+24m+36-2m^2-6=2m^2+24m+30\)
Lại có : \(x_1^2+x_2^2=86\)hay \(2m^2+24m+30=86\Leftrightarrow2\left(m^2+12m-28\right)=0\)
\(\Leftrightarrow2\left(m-2\right)\left(m+14\right)=0\Leftrightarrow\left[{}\begin{matrix}m=2\left(chon\right)\\m=-14\left(loại\right)\end{matrix}\right.\)
Để phương trình có hai nghiệm phân biệt thì Δ > 0
=> [ -(m-3) ]2 - (m2 + 3) > 0
<=> m2 - 6m + 9 - m2 - 3 > 0
<=> -6m + 6 > 0
<=> m < 1
Vậy với m < 1 thì phương trình có hai nghiệm phân biệt
Theo hệ thức Viète ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m-6\\x_1x_2=\dfrac{c}{a}=m^2+3\end{matrix}\right.\)
Khi đó x12 + x22 = 86
<=> ( x1 + x2 )2 - 2x1x2 - 86 = 0
<=> ( 2m - 6 )2 - 2( m2 + 3 ) - 86 = 0
<=> 4m2 - 24m + 36 - 2m2 - 6 - 86 = 0
<=> 2m2 - 24m - 56 = 0
<=> m2 - 12m - 28 = 0
Δ' = b'2 - ac = 36 + 28 = 64
Δ' > 0, áp dụng công thức nghiệm thu được m1 = 14 (ktm) ; m2 = -2 (tm)
Vậy với m = -2 thì thỏa mãn đề bài
Tìm m để :
a. Phương trình \(x^2-\left(2m+1\right)x+m^2-3=0\) có nghiệm kép
b. Phương trình \(x^2-3mx+m-2=0\) vô nghiệm
c. Phương trình \(x^2-2\left(m-1\right)x+m^2=0\) có nghiệm
a: \(\Leftrightarrow\left(2m+1\right)^2-4\left(m^2-3\right)=0\)
\(\Leftrightarrow4m^2+4m+1-4m^2+12=0\)
=>4m=-13
hay m=-13/4
c: \(\Leftrightarrow\left(2m-2\right)^2-4m^2>=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2>=0\)
=>-8m>=-4
hay m<=1/2
Cho phương trình: m2x + m(x - 3) = 6(x - 1) (m là tham số) (1)
a. Giải phương trình (1) khi m = 1
b. Tìm m để phương trình (1) có một nghiệm duy nhất thỏa mãn biểu thức A=x^2+2x+3/x^2+2 đạt giá trị nhỏ nhất?
a: Khi m=1 thì pt sẽ là: x+x-3=6x-6
=>6x-6=2x-3
=>4x=3
=>x=3/4
b: m^2x+m(x-3)=6(x-1)
=>x(m^2+m-6)=-6+3m=3m-6
=>x(m+3)(m-2)=3(m-2)
Để (1) có nghiệm duy nhất thì (m+3)(m-2)<>0
=>m<>-3 và m<>2
=>x=3/(m+3)
\(A=\dfrac{\left(\dfrac{3}{m+3}\right)^2+\dfrac{6}{m+3}+3}{\left(\dfrac{3}{m+3}\right)^2+2}\)
\(=\dfrac{9+6m+18+3m^2+18m+27}{\left(m+3\right)^2}:\dfrac{9+2m^2+12m+18}{\left(m+3\right)^2}\)
\(=\dfrac{3m^2+24m+54}{2m^2+12m+27}>=\dfrac{1}{2}\)
Dấu = xảy ra khi 6m^2+48m+108=2m^2+12m+27
=>4m^2+36m+81=0
=>m=-9/2
Cho phương trình: m2x + m(x - 3) = 6(x - 1) (m là tham số) (1)
a. Giải phương trình (1) khi m = 1
b. Tìm m để phương trình (1) có một nghiệm duy nhất thỏa mãn biểu thức A=x^2+2x+3/x^2+2 đạt giá trị nhỏ nhất?
a) khi m = 1 ta có pt
x + 1.(x-3) = 6.(x-1)
=> x + x - 3 = 6x - 6
=> -4x = -3
=> x = 3/4
vậy với m=1 pt có no x =3/4