a: Khi m=1 thì (1) sẽ là:
x^2-4x-5=0
=>x=5 hoặc x=-1
a: Khi m=1 thì (1) sẽ là:
x^2-4x-5=0
=>x=5 hoặc x=-1
a, Giải hệ phương trình: 3 x - 2 y + 1 = 1 5 x + 2 y + 1 = 3
b, Cho phương trình x 2 – (m – 1)x – m 2 – 1 = 0 với x là ẩn và m là tham số. Tìm m để phương trình có hai nghiệm phân biệt x 1 , x 2 thỏa mãn x 1 + x 2 = 2 2
(1) Cho phương trình bậc hai ẩn x ( m là tham số)x^2-4x+m=0(1) a) Giải phương trình với m =3 b) Tìm đk của m để phương trình (1) luôn có 2 nghiệm phân biệt (2) Cho phương trình bậc hai x^2-2x -3m+1=0 (m là tham số) (2) a) giải pt với m=0 b)Tìm m để pt (2) có nghiệm phân biệt. ( mng oii giúp mk vs mk đang cần gấp:
Cho phương trình: \(x^2\) - mx + 2m - 4 =0 (1) (với là ẩn, mlà tham số).
a) Tìm m để phương trình có nghiệm x = 3. Tìm nghiệm còn lại.
b) Tìm m để phương trình (1) có hai nghiệm phân biệt x1; x2 thoả mãn: \(x^2_1\) + m\(x_2\) = 12.
Cho phương trình: x 2 − 2 ( m + 1 ) x + m 2 + m − 1 = 0 (m là tham số).
a) Giải phương trình với m= 0.
b) Tìm m để phương trình có hai nghiệm phân biệt x 1 , x 2 thỏa mãn điều kiện:
1 x 1 + 1 x 2 = 4 .
Cho phương trình x^2-(m+2)x+m+1=0(1)(x là ẩn, m là tham số Tìm m để phương trình (1) có 2 nghiệm phân biệt x1,x2 thỏa mãn x1^2—2x2=7
Cho phương trình: xᒾ + 2(m − 1)x+mᒾ - 3 = 0 (1) (m là tham số) a) Giải phương trình (1) với m=2 b) Tìm m để phương trình (1) có hai nghiệm X₁; x₂ thỏa mãn x₁ + x₂ =52
cho phương trình: x^2 -2(m-1)x +m+2 =0 (1),(x là ẩn, m là tham số) a) Giải phương trình với m=5
b) tìm m dể phương trình 1 có 2 nghiệm x1, x2 thỏa mãn: x1/x2+x2/1=4Cho phương trình bậc hai ( ẩn x) : x² + 4x + m +1= 0 (*) (m là tham số)
a) Giải phương trình khi m = -1
b) Tìm m để phương trình có một nghiệm bằng 2.Tìm nghiệm còn lại.
c) Tìm m để phương trình có hai nghiệm x1,x2 thỏa mãn x12 + x12 =10.
1, cho phương trình ẩn x ; x2 - 5x + m - 2 = 0 ( 1) (m là tham số )
a, giải phương trình ( 1) với m = 6
b. tìm m để phương trình ( 1) có 2 nghiệm phân biệt x1 .x2 thỏa mãn hệ thức\(\dfrac{1}{\sqrt{x_1}}\text{ + }\dfrac{1}{\sqrt{x_2}}\text{ = }\dfrac{3}{2}\)
\(\dfrac{1}{\sqrt{x_1}}\text{ + }\dfrac{1}{\sqrt{x_2}}\text{ = }\dfrac{3}{2}\)