\(\Delta=\left(m+2\right)^2-4\left(m+1\right)\)
\(=m^2+4m+4-4m-4=m^2\)
Để (1) có hai nghiệm phân biệt thì Δ>0
=>\(m^2>0\)
=>m<>0
Khi đó, phương trình có hai nghiệm phân biệt là:
\(\left[\begin{array}{l}x=\frac{m+2-\sqrt{m^2}}{2\cdot1}=\frac{m+2-m}{2}=\frac22=1\\ x=\frac{m+2+\sqrt{m^2}}{2\cdot1}=\frac{m+2+m}{2}=\frac{2m+2}{2}=m+1\end{array}\right.\)
TH1: \(x_1=1;x_2=m+1\)
\(x_1^2-2x_2=7\)
=>\(1^2-2\left(m+1\right)=7\)
=>2(m+1)=1-7=-6
=>m+1=-3
=>m=-4(nhận)
TH2: \(x_1=m+1;x_2=1\)
\(x_1^2-2x_2=7\)
=>\(\left(m+1\right)^2-2=7\)
=>\(\left(m+1\right)^2=2+7=9\)
=>\(\left[\begin{array}{l}m+1=3\\ m+1=-3\end{array}\right.\Rightarrow\left[\begin{array}{l}m=2\\ m=-4\end{array}\right.\)