Phân tích đa thức thành phân tử : ax - 2x -a² + 2a Giải chi tiết giúp e vs ạ
Phân tích đa thức thành nhân tử:
\(x\)2\(+x-6\)
Giải chi tiết giúp em. Cảm ơn ạ
Tham khảo:https://hoc247.net/hoi-dap/toan-8/phan-tich-da-thuc-x-7-x-2-1-thanh-nhan-tu-faq417522.html
\(=x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2+x^2-x^2+x-x+1\\ =\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^4+x^3+x^2\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
Lời giải:
$x^2+x-6=(x^2-2x)+(3x-6)=x(x-2)+3(x-2)=(x-2)(x+3)$
Phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử
Câu 1 phân tích đa thức thành nhân tử
4a^2b^2-(a^2+b^2-c^2)^2
Giúp em với ạ em cảm ơn
Giải chi tiết giúp em
\(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(=4a^2b^2-2ab\left(a^2+b^2-c^2\right)+2ab\left(a^2+b^2-c^2\right)-\left(a^2+b^2-c^2\right)^2\)
\(=2ab\left[2ab-\left(a^2+b^2-c^2\right)\right]+\left(a^2+b^2-c^2\right)\left[2ab-\left(a^2+b^2-c^2\right)\right]\)
\(=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)
\(=\left(a^2+ab+ab+b^2-c^2\right)\left[c^2-\left(a^2-ab-ab+b^2\right)\right]\)
\(=\left[a\left(a+b\right)+b\left(a+b\right)-c^2\right]\left[c^2-\left(a\left(a-b\right)-b\left(a-b\right)\right)\right]\)
\(=\left[\left(a+b\right)^2-c^2\right]\left[c^2-\left(a-b\right)^2\right]\)
\(=\left[\left(a+b\right)^2-c\left(a+b\right)+c\left(a+b\right)-c^2\right]\left[c^2+c\left(a-b\right)-c\left(a-b\right)-\left(a-b\right)^2\right]\)
\(=\left[\left(a+b\right)\left(a+b-c\right)+c\left(a+b-c\right)\right]\left[c\left(c+a-b\right)-\left(a-b\right)\left(c+a-b\right)\right]\)
\(=\left(a+b+c\right)\left(a+b-c\right)\left(c+a-b\right)\left(c-a+b\right)\)
Phân tích các đa thức sau thành nhân tử
a, ay^2 - 2ayz + az^2
b, x^2+ 6xy + 9y^2 - 16
c, 7a-7b+a^2-b^2
d, 36x^4 - 13x^2
e, 2x^3 - 18x
f, x2 - 49 + y^2 - 2xy
g, 2x+2y-x^2-xy
h, (x^2 + 3)^2 + 16
làm ơn giải chi tiết giúp mik vs ạ
a: \(=a\left(y^2-2yz+z^2\right)\)
\(=a\left(y-z\right)^2\)
b: \(=\left(x^2+6xy+9y^2\right)-16\)
=(x+3y)^2-16
=(x+3y+4)(x+3y-4)
c: \(=7\left(a-b\right)+\left(a-b\right)\left(a+b\right)\)
=(a-b)(7+a+b)
d: \(36x^4-13x^2\)
=x^2*36x^2-x^2*13
=x^2(36x^2-13)
f: x^2-2xy+y^2-49
=(x-y)^2-49
=(x-y-7)(x-y+7)
e: 2x^3-18x
=2x(x^2-9)
=2x(x-3)(x+3)
g: 2x+2y-x^2-xy
=2(x+y)-x(x+y)
=(x+y)(2-x)
h: (x^2+3)^2+16
=x^4+6x^2+25
=x^4+10x^2+25-4x^2
=(x^2+5)^2-4x^2
=(x^2-2x+5)(x^2+2x+5)
Giúp vs ạ c.ơn rất nhiều !
Phân tích đa thức thành nhân tử
a, a^2 + b^2 + 2ab + 2a + 2b + 1
b, ax^2 - bx^2 - 2bc + 2ax + a
a) \(a^2+b^2+2ab+2a+2b+1=\left(a^2+2ab+b^2\right)+\left(2a+2b\right)+1\)
\(=\left(a+b\right)^2+2\left(a+b\right)+1=\left[\left(a+b\right)+1\right]^2=\left(a+b+1\right)^2\)
b) K phân tích dc.
Đề: phân tích đa thức thành nhân tử: A)x³-16x; B)3x²+3y²-6xy-12; C)x²+6x+5; D)x⁴+x³+2x²+x+1.Giúp mk vs ạ(cho mk lời giải cho tiết nha)
a) \(x^3-16x=x\left(x^2-4\right)=x\left(x-2\right)\left(x+2\right)\)
b) \(3x^2+3y^2-6xy-12=3\left(x^2-2xy+y^2-4\right)=3\left(x-y-2\right)\left(x-y+2\right)\)
c) \(x^2+6x+5=\left(x+1\right)\left(x+5\right)\)
d) \(x^4+x^3+2x^2+x+1=x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^2+1\right)\)
phân tích đa thức thành nhân tử: x^3 -2x -4
phân tích chi tiết cho mình với ạ
x^3-2x-4
=x^3-2x-8+4 (Ta thấy - 8 + 4 là bằng -4 nên ta thêm vào thì cũng giống nhau)
=(x^3-8)-(2x-4) (Nhóm hạng tử)
=(x-2)(x^2+2x+4)-2(x-2) \([\)(Hằng đẳng thức 6) và ta thấy -2 là nhân tử chung\(]\)
=(x-2)(x^2+2x+4-x+2) (Rút gọn)
=(x-2)(x^2+x+6)
x³ - 2x - 4
= x³ - 2x² + 2x² - 4x + 2x - 4
= (x³ - 2x²) + (2x² - 4x) + (2x - 4)
= x²(x - 2) + 2x(x - 2) + 2(x - 2)
= (x - 2)(x² + 2x + 2)
Phân tích đa thức thành nhân tử
ax-2x-a^2+2a
ax - 2x - a2 + 2a
= x(a - 2) - a(a - 2)
= (x - a)(a - 2)
\(ax-2x-a^2+2a\)
\(=\left(ax-2x\right)-\left(a^2-2a\right)\)
\(=x\left(a-2\right)-a\left(a-2\right)\)
\(=\left(a-2\right)\left(x-a\right)\)
Trả lời:
ax - 2x - a2 + 2a
= ( ax - 2x ) - ( a2 - 2a )
= x ( a - 2 ) - a ( a - 2 )
= ( x - a ) ( a - 2 )
Phân tích đa thức sau thành nhân tử:
x4 + 4
GIẢI CHI TIẾT GIÚP MK VS NHÉ!
Ta có \(x^4+4=\left(x^2\right)^2+2^2=\left(x^2+2\right)^2-2.x^2.2=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)