Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng
Xem chi tiết
Hoàng
11 tháng 3 2021 lúc 21:38

undefined

Hoàng
11 tháng 3 2021 lúc 21:39

undefined

Minh Hoàng Nguyễn
Xem chi tiết
Quoc Binh
10 tháng 4 2021 lúc 20:21

x2-2(m-1)x+m2-3m=0

'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1

áp dụng hệ thức Vi-ét ta được 

x1+x2=2(m-1)                                               (1)

x1*x2=m2-3m                                         (2)  

a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1

b) để PT có duy nhất một nghiệm âm thì x1*x2 <0

Nguyễn Lê Phước Thịnh
10 tháng 4 2021 lúc 20:54

e) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)

\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)

\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)

\(\Leftrightarrow2m^2-2m-4=0\)(1)

\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)

Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)

Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)

thùy linh
Xem chi tiết
YangSu
6 tháng 1 2023 lúc 16:44

Bài 5 :

Thay \(x=-3\) vào pt : \(3x+m-x-1=0\)

\(\Leftrightarrow3\left(-3\right)+m-\left(-3\right)-1=0\)

\(\Leftrightarrow-9+m+3-1=0\)

\(\Leftrightarrow m-7=0\)

\(\Leftrightarrow m=7\)

Vậy \(m=7\) để pt nhận \(x=-3\) là nghiệm

Bài 6 :

Thay \(x=1\) vào pt : \(\left(2m-4\right)x+6=0\)

\(\Leftrightarrow2mx-4x+6=0\)

\(\Leftrightarrow2m-4+6=0\)

\(\Leftrightarrow2m+2=0\)

\(\Leftrightarrow m=-1\)

Vậy \(m=-1\) để pt nhận \(x=1\) là nghiệm

Phương Lý 21 Nguyễn Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 7 2023 lúc 23:48

a: Khi m=1 thì pt sẽ là: x^2+4x-3=0

=>x=-2+căn 7 hoặc x=-2-căn 7

b: Δ=(2m-6)^2-4(m-4)

=4m^2-24m+36-4m+16

=4m^2-28m+52=(2m-7)^2+3>0

=>PT luôn có hai nghiệm pb

c: PT có hai nghiệm trái dấu

=>m-4<0

=>m<4

trà my
Xem chi tiết
Kiyotaka Ayanokoji
9 tháng 5 2020 lúc 18:17

 x2 - 2(m - 1)x +m2 + 4m + 13 = 0 (1) \(\left(a=1;b=-2\left(m-1\right);c=m^2+4m+13\right)\)

Ta có \(\Delta'=\left(-\left(m-1\right)\right)^2-1.\left(m^2+4m+13\right)\)

              \(=m^2-2m+1-m^2-4m-13\)

               \(=-6m-12=-6\left(m+2\right)\)

a+b, Để phương trình (1) có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow-6\left(m+2\right)\ge0\)

                                                                            \(\Leftrightarrow m+2\le0\)

                                                                            \(\Leftrightarrow m\le-2\)

Câu b giống với câu a nhé!

Khách vãng lai đã xóa
Thanh Hân
Xem chi tiết
Hồng Phúc
20 tháng 1 2021 lúc 19:18

Hệ đã cho vô nghiệm khi

\(m+2=\dfrac{m+1}{3}\ne\dfrac{3}{4}\Leftrightarrow m=-\dfrac{5}{2}\)

Thanh Trúc
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 4 2021 lúc 16:37

a. Bạn tự giải

b. Pt có nghiệm kép khi:

\(\Delta'=\left(m+1\right)^2-4m=0\Leftrightarrow m^2-2m+1=0\Leftrightarrow m=1\)

Khi đó: \(x_{1,2}=m+1=2\)

c. Do pt có nghiệm bằng 4:

\(\Rightarrow4^2-2\left(m+1\right).4+4m=0\)

\(\Leftrightarrow8-4m=0\Rightarrow m=2\)

\(x_1x_2=4m\Rightarrow x_2=\dfrac{4m}{x_1}=\dfrac{4.2}{4}=2\)

võ dương thu hà
Xem chi tiết
Tiến Dũng Đinh
5 tháng 3 2017 lúc 6:09

giải \(\Delta\)ra ngay mà bạn?

Chan
Xem chi tiết
Nguyễn Thị Trà My
16 tháng 5 2021 lúc 12:12

1) điều kiện của m: m khác 5/2

thế x=2 vào pt1 ta đc:

(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)

lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2

vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2

3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m

 

 

Nguyễn Hà Vy
Xem chi tiết
Trúc Giang
28 tháng 11 2021 lúc 21:38

undefined