Xác định m để phương trình 3 . 4 x - ( m - 1 ) 2 x + m - 4 = 0 có đúng hai nghiệm.
A. m > 4 , m ≠ 7
B. m > 0 , m ≠ 7
C. m < 0 , m ≠ 7
D. m < 7 , m ≠ 0
Bài 1: Cho bất phương trình \(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\). Xác định m để bất phương trình nghiệm \(\forall x\in[-1;3]\)
Bài 2: Cho bất phương trình \(x^2-6x+\sqrt{-x^2+6x-8}+m-1\ge0\). Xác định m để bất phương trình nghiệm đúng \(\forall x\in[2;4]\)
Cho phương trình :
\(x^2-2\left(m-1\right)x+m^2-3m=0\)
a) Xác định m để phương trình có 2 nghiệm phân biệt
b) Xác định m để phương trình có đúng 1 nghiệm âm
c) Xác định m để phương trình có 1 nghiệm bằng 0. Tìm nghiệm còn lại
d) Tìm hệ thức liên hệ giữa 2 nghiệm x1, x2 của phương trình không phụ thuộc và m
e) Xác định m để phương trình có 2 nghiệm thỏa mãn \(x1^2+x2^2=8\)
x2-2(m-1)x+m2-3m=0
△'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1
áp dụng hệ thức Vi-ét ta được
x1+x2=2(m-1) (1)
x1*x2=m2-3m (2)
a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1
b) để PT có duy nhất một nghiệm âm thì x1*x2 <0
e) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)
\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)
\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)
\(\Leftrightarrow2m^2-2m-4=0\)(1)
\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)
Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)
Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)
bài 5 xác định m để phương trình :3x+m-x-1=0 nhận x=-3 là nghiệm
bài 6 tìm m để phương trình :(2m-4).x+6=0 có nghiệm x=1
Bài 5 :
Thay \(x=-3\) vào pt : \(3x+m-x-1=0\)
\(\Leftrightarrow3\left(-3\right)+m-\left(-3\right)-1=0\)
\(\Leftrightarrow-9+m+3-1=0\)
\(\Leftrightarrow m-7=0\)
\(\Leftrightarrow m=7\)
Vậy \(m=7\) để pt nhận \(x=-3\) là nghiệm
Bài 6 :
Thay \(x=1\) vào pt : \(\left(2m-4\right)x+6=0\)
\(\Leftrightarrow2mx-4x+6=0\)
\(\Leftrightarrow2m-4+6=0\)
\(\Leftrightarrow2m+2=0\)
\(\Leftrightarrow m=-1\)
Vậy \(m=-1\) để pt nhận \(x=1\) là nghiệm
Cho phương trình: x²-2(m-3)x+(m-4)=0 (1) a) giải phương trình với m=1 b) Chứng minh phương trình (1) luôn có hai nghiệm phân biệt c) Xác định m để phương trình có hai nghiệm trái dấu d)Tính theo m giá trị của biểu thức A=1/x1+1/x2.Tìm m để A € Z để A € Z
a: Khi m=1 thì pt sẽ là: x^2+4x-3=0
=>x=-2+căn 7 hoặc x=-2-căn 7
b: Δ=(2m-6)^2-4(m-4)
=4m^2-24m+36-4m+16
=4m^2-28m+52=(2m-7)^2+3>0
=>PT luôn có hai nghiệm pb
c: PT có hai nghiệm trái dấu
=>m-4<0
=>m<4
cho phương trình: x2 - 2(m - 1)x +m2 + 4m + 13 = 0 (1)
a) xác định m để phương trình (1) có nghiệm
b) xác định m để phương trình (1) có hai nghiệm
x2 - 2(m - 1)x +m2 + 4m + 13 = 0 (1) \(\left(a=1;b=-2\left(m-1\right);c=m^2+4m+13\right)\)
Ta có \(\Delta'=\left(-\left(m-1\right)\right)^2-1.\left(m^2+4m+13\right)\)
\(=m^2-2m+1-m^2-4m-13\)
\(=-6m-12=-6\left(m+2\right)\)
a+b, Để phương trình (1) có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow-6\left(m+2\right)\ge0\)
\(\Leftrightarrow m+2\le0\)
\(\Leftrightarrow m\le-2\)
Câu b giống với câu a nhé!
Cho hệ phương trình\(\left\{{}\begin{matrix}\left(m+2\right)x+\left(m+1\right)y=3\\\\x+3y=4\end{matrix}\right.\)
Xác định các giá trị của m để hệ phương trình vô nghiệm
Hệ đã cho vô nghiệm khi
\(m+2=\dfrac{m+1}{3}\ne\dfrac{3}{4}\Leftrightarrow m=-\dfrac{5}{2}\)
cho phương trình \(x^2-2\left(m+1\right)x+4m=0\)
a, giải phương trình khi m = 3
b, tìm m để để phương trình có nghiệm kép. Tìm nghiệm kép đó
c, xác định phương trình có 1 nghiệm bằng 4. Tìm nghiệm còn lại
a. Bạn tự giải
b. Pt có nghiệm kép khi:
\(\Delta'=\left(m+1\right)^2-4m=0\Leftrightarrow m^2-2m+1=0\Leftrightarrow m=1\)
Khi đó: \(x_{1,2}=m+1=2\)
c. Do pt có nghiệm bằng 4:
\(\Rightarrow4^2-2\left(m+1\right).4+4m=0\)
\(\Leftrightarrow8-4m=0\Rightarrow m=2\)
\(x_1x_2=4m\Rightarrow x_2=\dfrac{4m}{x_1}=\dfrac{4.2}{4}=2\)
Cho phương trình: x^2 -2(m+1)x-4m=0
a. xác định m để phương trình có nghiệm kép?
b. Xác định m để phương trình có một nghiệm bằng 4? Tìm nghiệm còn lại
c. Với điều kiện nào của m thì phương trình có nghiệm cũng cùng dấu hoặc nghiệm kép
Cho phương trình (2m−5)x2 −2(m−1)x+3=0 (1); với m là tham số thực
1) Tìm m để phương trình (1) có một nghiệm bằng 2, tìm nghiệm còn lại.
3) Tìm giá trị của m để phương trình đã cho có nghiệm
4) Xác định các giá trị nguyên của để phương trình đã cho có hai nghiệm phân biệt đều nguyên dương
1) điều kiện của m: m khác 5/2
thế x=2 vào pt1 ta đc:
(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)
lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2
vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2
3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m
xác định m để phương trình x^3-(2m+1)x^2+(m^2+m+1)x-m^2+m-1=0 có ba nghiệm dương phân biệt