Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quỳnh Anh
Xem chi tiết
Khôi Bùi
25 tháng 4 2022 lúc 22:54

\(\lim\limits_{x\rightarrow a}\dfrac{x^4-a^4}{x^2-a^2}=\lim\limits_{x\rightarrow a}\left(x^2+a^2\right)=2a^2\)

Quỳnh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 6 2023 lúc 21:49

\(=\lim\limits_{x\rightarrow2}x-1=2-1=1\)

Linh Trương
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2023 lúc 20:54

1: \(\lim\limits_{x\rightarrow4}\dfrac{1-x}{\left(x-4\right)^2}=-\infty\) 

vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow4}1-x=1-4=-3< 0\\\lim\limits_{x\rightarrow4}\left(x-4\right)^2=\left(4-4\right)^2=0\end{matrix}\right.\)

2: \(\lim\limits_{x\rightarrow3^+}\dfrac{2x-1}{x-3}=+\infty\)

vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow3^+}2x-1=2\cdot3-1=5>0\\\lim\limits_{x\rightarrow3^+}x-3=3-3>0\end{matrix}\right.\) và x-3>0

3: \(\lim\limits_{x\rightarrow2^+}\dfrac{-2x+1}{x+2}\)

\(=\dfrac{-2\cdot2+1}{2+2}=\dfrac{-3}{4}\)

4: \(\lim\limits_{x\rightarrow1^-}\dfrac{3x-1}{x+1}=\dfrac{3\cdot1-1}{1+1}=\dfrac{2}{2}=1\)

 

Quỳnh Anh
Xem chi tiết
Khôi Bùi
25 tháng 4 2022 lúc 22:56

\(\left(...\right)=\lim\limits_{x\rightarrow1}\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(\sqrt{2x+7}+3\right)}=\lim\limits_{x\rightarrow1}\dfrac{2}{\sqrt{2x+7}+3}=\dfrac{1}{3}\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2023 lúc 18:52

1: \(-1< =cosx< =1\)

=>\(-3< =3\cdot cosx< =3\)

=>\(y\in\left[-3;3\right]\)

2:

TXĐ là D=R

3: \(L=\lim\limits\dfrac{-3n^3+n^2}{2n^3+5n-2}\)

\(=\lim\limits\dfrac{-3+\dfrac{1}{n}}{2+\dfrac{5}{n^2}-\dfrac{2}{n^3}}=-\dfrac{3}{2}\)

4:

\(L=lim\left(3n^2+5n-3\right)\)

\(=\lim\limits\left[n^2\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)\right]\)

\(=+\infty\) vì \(\left\{{}\begin{matrix}lim\left(n^2\right)=+\infty\\\lim\limits\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)=3>0\end{matrix}\right.\)

5:

\(\lim\limits_{n\rightarrow+\infty}n^3-2n^2+3n-4\)

\(=\lim\limits_{n\rightarrow+\infty}n^3\left(1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}\right)\)

\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow+\infty}n^3=+\infty\\\lim\limits_{n\rightarrow+\infty}1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}=1>0\end{matrix}\right.\)

YangSu
22 tháng 10 2023 lúc 18:59

\(1,y=3cosx\)

\(+TXD\) \(D=R\)

Có \(-1\le cosx\le1\)

\(\Leftrightarrow-3\le3cosx\le3\)

Vậy có tập giá trị \(T=\left[-3;3\right]\)

\(2,y=cosx\)

\(TXD\) \(D=R\)

\(3,L=lim\dfrac{n^2-3n^3}{2n^3+5n-2}=lim\dfrac{\dfrac{1}{n}-3}{2+\dfrac{5}{n^2}-\dfrac{2}{n^3}}\)(chia cả tử và mẫu cho \(n^3\))

\(=\dfrac{lim\dfrac{1}{n}-lim3}{lim2+5lim\dfrac{1}{n^2}-2lim\dfrac{1}{n^3}}=\dfrac{0-3}{2+5.0-2.0}=-\dfrac{3}{2}\)

\(4,L=lim\left(3n^2+5n-3\right)\\ =lim\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)\\ =lim3+5lim\dfrac{1}{n}-3lim\dfrac{1}{n^2}\\ =3\)

\(5,\lim\limits_{n\rightarrow+\infty}\left(n^3-2n^2+3n-4\right)\\ =lim\left(1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}\right)\\ =lim1-0\\ =1\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 21:17

Vì \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = 3 \ne \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 5\) nên không tồn tại giới hạn \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\)

Lê Ngọc Nhả Uyên
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 5 2021 lúc 14:11

1.

\(\lim\limits_{x\rightarrow-1}\dfrac{2x^2-x-3}{x^2-1}=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(2x-3\right)}{\left(x+1\right)\left(x-1\right)}=\lim\limits_{x\rightarrow-1}\dfrac{2x-3}{x-1}=\dfrac{5}{2}\)

2.

a. \(y'=6x^2-sinx-\dfrac{1}{2\sqrt{x}}\)

b. \(y'=10\left(x^2-5\right)^9.\left(x^2-5\right)'=20x\left(x^2-5\right)^9\)

3.

\(y'=-2x\)

\(k=4\Rightarrow-2x=4\Rightarrow x=-2\Rightarrow y\left(-2\right)=-24\)

Phương trình tiếp tuyến:

\(y=4\left(x+2\right)-24\Leftrightarrow y=4x-16\)

minh phong vu
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Kudo Shinichi AKIRA^_^
13 tháng 4 2022 lúc 21:07

sao có GP lại ko có huy hiệu hỏi thôi

Khôi Bùi
13 tháng 4 2022 lúc 22:29

Thấy : \(\sqrt{x^2+x+3}-x^2+1=\sqrt{x^2+x+3}-\left(x^2-1\right)=\dfrac{x^2+x+3-\left(x^2-1\right)^2}{\sqrt{x^2+x+3}+x^2-1}\)

\(=\dfrac{x^2+x+3-x^4+2x^2-1}{...}=\dfrac{-x^4+3x^2+x+2}{...}\)

\(=\dfrac{-\left(x-2\right)\left(x^3+2x^2+x+1\right)}{...}\)

\(\dfrac{\sqrt{x^2+x+3}-x^2+1}{x^2-4}=\dfrac{-\left(x^3+2x^2+x+1\right)}{\left(x+2\right)\left[\sqrt{x^2+x+3}+x^2-1\right]}\)

\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{x^2+x+3}-x^2+1}{x^2-4}=\dfrac{-\left(2^3+2.2^2+2+1\right)}{4.\left[\sqrt{2^2+2+3}+2^2-1\right]}=-\dfrac{19}{24}\)

Quỳnh Anh
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 4 2022 lúc 21:55

\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{x^2+x+3}-x^2+1}{x^2-4}=\lim\limits_{x\rightarrow2}\dfrac{\dfrac{2x+1}{2\sqrt{x^2+x+3}}-2x}{2x}=\dfrac{\dfrac{2.2+1}{2\sqrt{4+2+3}}-4}{4}=-\dfrac{19}{24}\)